AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (18.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Bright and stable quantum confined CsPbBr3 nanocrystals through post-synthetic chemical cutting and in-situ encapsulation

Hao ZhangJiang ChenTiantian ZhuRui WangXuemei WangXijun XuJianli Wang ( )
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Show Author Information

Graphical Abstract

A post-synthetic chemical cutting and in-situ encapsulation strategy is developed to prepare strongly quantum confined CsPbBr3 composites with tunable cyan/blue luminescence. The CsPbBr3 composites exhibit simultaneously high quantum yields (over 80%), narrow line width (15 nm), and excellent stability against polar solvents, heat, and light.

Abstract

Quantum-confined CsPbBr3 nanocrystals are promising cyan/blue-emitting materials with exceptional potential for advanced lighting and display technologies. However, their practical application is often limited by low luminescent efficiency, undesirable color purity and instability stemming from inadequate size uniformity, and high surface defect density. Here, we propose a post-synthetic chemical cutting and in-situ encapsulation approach using 3-aminopropyltriethoxysilane (APTES) combined with polymethylhydrosiloxane (PMHS) to synthesize and stabilize CsPbBr3 nanocrystals with significant quantum confinement. APTES can function as a chemical scissor efficiently cutting the green emitting CsPbBr3 (9.8 nm) to smaller counterparts (3.9–7.9 nm), while also passivating surface defects through A-site doping. Crosslinking between APTES and PMHS prevents phase transformation during synthesis and forms a polymeric network that encapsulates and separates the quantum confined CsPbBr3. The resulting composites exhibit tunable emission from 517 to 461 nm, a narrow linewidth of approximately 15 nm, and quantum yields over 80%. Moreover, incorporating one CsPbBr3 composite into a white light-emitting diode to fill the “cyan gap” significantly enhances the color rendering index from 77.7 to 86.4. This work provides an effective strategy for developing bright and stable quantum-confined CsPbBr3 for advanced lighting applications.

Electronic Supplementary Material

Download File(s)
7131_ESM.pdf (5.2 MB)

References

[1]

Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.

[2]

Jiang, G. C.; Erdem, O.; Hübner, R.; Georgi, M.; Wei, W.; Fan, X. L.; Wang, J.; Demir, H. V.; Gaponik, N. Mechanosynthesis of polymer-stabilized lead bromide perovskites: Insight into the formation and phase conversion of nanoparticles. Nano Res. 2021, 14, 1078–1086.

[3]

Wang, H. R.; Zhang, X. Y.; Wu, Q. Q.; Cao, F.; Yang, D. W.; Shang, Y. Q.; Ning, Z. J.; Zhang, W.; Zheng, W. T.; Yan, Y. F. et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 2019, 10, 665.

[4]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[5]

Yin, J.; Yang, H. Z.; Gutiérrez-Arzaluz, L.; Zhou, Y.; Brédas, J. L.; Bakr, O. M.; Mohammed, O. F. Luminescence and stability enhancement of inorganic perovskite nanocrystals via selective surface ligand binding. ACS Nano 2021, 15, 17998–18005.

[6]

Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

[7]

Shen, Y. Y.; Tang, H. L.; Liu, F.; Lin, K. B.; Lu, J. X.; Yan, C. Z.; Feng, W. J.; Liu, K. K.; Wu, L. Q.; Li, M. J. et al. Stable cyan and white light-emitting diodes enabled by branched cations sterically stabilized 2D/3D perovskites. Chem. Eng. J. 2021, 423, 130160.

[8]

Wu, Y.; Li, X. M.; Zeng, H. B. Highly luminescent and stable halide perovskite nanocrystals. ACS Energy Lett. 2019, 4, 673–681.

[9]

Shen, Y. Y.; Yan, C. Z.; Lin, K. B.; Zhao, Y. P.; Xu, S. R.; Zhou, B.; Wei, Z. H.; Yan, K. Y. Recent advances on cyan-emitting (480 ≤ λ ≤ 520 nm) metal halide perovskite materials. Small Sci. 2021, 1, 2000077.

[10]

Zhang, J. F.; Wang, L.; Zhang, X. Y.; Xie, G. H.; Jia, G. H.; Zhang, J. H.; Yang, X. Y. Blue light-emitting diodes based on halide perovskites: Recent advances and strategies. Mater. Today 2021, 51, 222–246.

[11]

Yoon, Y. J.; Shin, Y. S.; Jang, H.; Son, J. G.; Kim, J. W.; Park, C. B.; Yuk, D.; Seo, J.; Kim, G. H.; Kim, J. Y. Highly stable bulk perovskite for blue LEDs with anion-exchange method. Nano Lett. 2021, 21, 3473–3479.

[12]

Wang, H. L.; Zhao, X. F.; Zhang, B. H.; Xie, Z. Y. Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr3 perovskite films. J. Mater. Chem. C 2019, 7, 5596–5603.

[13]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[14]

Vashishtha, P.; Ng, M.; Shivarudraiah, S. B.; Halpert, J. E. High efficiency blue and green light-emitting diodes using ruddlesden-popper inorganic mixed halide perovskites with butylammonium interlayers. Chem. Mater. 2019, 31, 83–89.

[15]

Braly, I. L.; Stoddard, R. J.; Rajagopal, A.; Uhl, A. R.; Katahara, J. K.; Jen, A. K. Y.; Hillhouse, H. W. Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design. ACS Energy Lett. 2017, 2, 1841–1847.

[16]

Yang, H. W.; Feng, Y. Q.; Tu, Z. Y.; Su, K.; Fan, X. Z.; Liu, B. J.; Shi, Z. P.; Zhang, Y. Z.; Zhao, C. Y.; Zhang, B. Blue emitting CsPbBr3 perovskite quantum dot inks obtained from sustained release tablets. Nano Res. 2019, 12, 3129–3134.

[17]

Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem., Int. Ed. 2024, 63, e202405637.

[18]

Kumar, S.; Jagielski, J.; Yakunin, S.; Rice, P.; Chiu, Y. C.; Wang, M. C.; Nedelcu, G.; Kim, Y.; Lin, S. C.; Santos, E. J. G. et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano 2016, 10, 9720–9729.

[19]

Zhao, J. Y.; Cao, S. N.; Li, Z.; Ma, N. Amino acid-mediated synthesis of CsPbBr3 perovskite nanoplatelets with tunable thickness and optical properties. Chem. Mater. 2018, 30, 6737–6743.

[20]

Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008–16011.

[21]

Dong, Y. T.; Qiao, T.; Kim, D.; Parobek, D.; Rossi, D.; Son, D. H. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 2018, 18, 3716–3722.

[22]

Lin, H.; Wei, Q.; Ng, K. W.; Dong, J. Y.; Li, J. L.; Liu, W. W.; Yan, S. S.; Chen, S.; Xing, G. C.; Tang, X. S. et al. Stable and efficient blue-emitting CsPbBr3 nanoplatelets with potassium bromide surface passivation. Small 2021, 17, 2101359.

[23]

Li, J.; Gan, L.; Fang, Z. S.; He, H. P.; Ye, Z. Z. Bright tail states in blue-emitting ultrasmall perovskite quantum dots. J. Phys. Chem. Lett. 2017, 8, 6002–6008.

[24]

Xiang, Q. Y.; Zhou, B. Z.; Cao, K.; Wen, Y. W.; Li, Y.; Wang, Z. J.; Jiang, C. C.; Shan, B.; Chen, R. Bottom up stabilization of CsPbBr3 quantum dots-silica sphere with selective surface passivation via atomic layer deposition. Chem. Mater. 2018, 30, 8486–8494.

[25]

Zhang, Q.; Jiang, M. H.; Yan, G. J.; Feng, Y. Q.; Zhang, B. Surface ligand engineering involving fluorophenethyl ammonium for stable and strong emission CsPbBr3 quantum dots and high-performance QLEDs. J. Mater. Chem. C 2022, 10, 5849–5855.

[26]

Fan, C.; Liu, H. P.; Zhou, J. W.; Dai, X. L.; He, H. P.; Ye, Z. Z. Ultrastable and highly efficient CsPbBr3 composites achieved by dual-matrix encapsulation for display devices. InfoMat 2023, 5, e12417.

[27]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[28]

Xiao, H.; Wei, Y.; Dang, P. P.; Liang, S.; Cheng, Z. Y.; Li, G. G.; Lin, J. Polymer ligands induced remarkable spectral shifts in all-inorganic lead halide perovskite nanocrystals. J. Mater. Chem. C 2020, 8, 9968–9974.

[29]

Takhellambam, D.; Meena, T. R.; Jana, D. Room temperature synthesis of blue and green emitting CsPbBr3 perovskite nanocrystals confined in mesoporous alumina film. Chem. Commun. 2019, 55, 4785–4788.

[30]

Malgras, V.; Henzie, J.; Takei, T.; Yamauchi, Y. Stable blue luminescent CsPbBr3 perovskite nanocrystals confined in mesoporous thin films. Angew. Chem., Int. Ed. 2018, 57, 8881–8885.

[31]

Zhang, H. Y.; Wang, B. L.; Niu, Z. J.; Chen, G. R.; Guan, B. Y.; Li, J. Y.; Yu, J. H. Ultrasmall water-stable CsPbBr3 quantum dots with high intensity blue emission enabled by zeolite confinement engineering. Mater. Horiz 2023, 10, 5079–5086.

[32]

Yoon, S.; Seo, M.; Kim, I. S.; Lee, K.; Woo, K. Ultra-stable and highly efficient white light emitting diodes through CsPbBr3 perovskite nanocrystals-silica composite phosphor functionalized with surface phenyl molecules. Small 2023, 19, 2206311.

[33]

Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.

[34]

Huang, H.; Zhao, W. R.; Yang, H. X.; Zhang, X. L.; Su, J. N.; Hu, K. G.; Nie, Z. G.; Li, Y.; Zhong, J. Y. In situ synthesis of blue-emitting bromide-based perovskite nanoplatelets towards unity quantum efficiency and ultrahigh stability. J. Mater. Chem. C 2021, 9, 5535–5543.

[35]

González-Pedro, V.; Veldhuis, S. A.; Begum, R.; Bañuls, M. J.; Bruno, A.; Mathews, N.; Mhaisalkar, S.; Maquieira, Á. Recovery of shallow charge-trapping defects in CsPbX3 nanocrystals through specific binding and encapsulation with amino functionalized silanes. ACS Energy Lett. 2018, 3, 1409–1414.

[36]

De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

[37]

Ding, H. W.; Jiang, H.; Wang, X. M. How organic ligands affect the phase transition and fluorescent stability of perovskite nanocrystals. J. Mater. Chem. C 2020, 8, 8999–9004.

[38]

Sun, C.; Zhang, Y.; Ruan, C.; Yin, C. Y.; Wang, X. Y.; Wang, Y. D.; Yu, W W. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater. 2016, 28, 10088–10094.

[39]

Huang, S. Q.; Li, Z. C.; Kong, L.; Zhu, N. W.; Shan, A. D.; Li, L. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene. J. Am. Chem. Soc. 2016, 138, 5749–5752.

[40]

Zhou, J.; Fang, F.; Chen, W.; Mei, M.; Liu, P. Z.; Hao, J. J.; Tang, H. D.; Liang, S. Z.; Lei, W.; Pan, R. K. et al. Luminescent perovskite nanocrystal composites via in situ ligand polymerization towards display applications. J. Mater. Chem. C 2021, 9, 14740–14748.

[41]

Choi, J. W.; Woo, H. C.; Huang, X. G.; Jung, W. G.; Kim, B. J.; Jeon, S. W.; Yim, S. Y.; Lee, J. S.; Lee, C. L. Organic–inorganic hybrid perovskite quantum dots with high PLQY and enhanced carrier mobility through crystallinity control by solvent engineering and solid-state ligand exchange. Nanoscale 2018, 10, 13356–13367.

[42]

Xu, Y. Q.; Hu, X. B.; Tang, H. D.; Hu, Q.; Wang, S. H.; Chen, T.; Zhang, X. J.; Jiang, W. H.; Wang, L. J.; Jiang, W. Highly efficient silica coated perovskite nanocrystals with the assistance of ionic liquids for warm white LEDs. Nanoscale 2023, 15, 631–643.

[43]

Liu, Q. B.; Liu, C.; Zhou, H. A study on the epitaxial large-size CsPbBr3 nanosheets grown by vapor phase epitaxy. Appl. Phys. A 2023, 129, 242.

[44]

Ye, C. Y.; Zhou, Y. J.; Ge, J.; Zhang, Q. Mechanistic insights into the photoluminescence enhancement in surface ligand modified CsPbBr3 perovskite nanocrystals. J. Phys. Chem. Lett. 2024, 15, 226–233.

[45]

Wang, S. J.; Chen, D. J.; Xu, K. Y.; Hu, J.; Huang, D. C.; Hong, M. C.; Zhu, H. M. Organic polystyrene and inorganic silica double shell protected lead halide perovskite nanocrystals with high emission efficiency and superior stability. Nano Res. 2023, 16, 10507–10514.

[46]

Song, W. T.; Wang, Y. M.; Wang, B.; Yao, Y. F.; Wang, W. G.; Wu, J. H.; Shen, Q.; Luo, W. J.; Zou, Z. G. Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation. Nano Res. 2020, 13, 795–801.

[47]

Trinh, C. K.; Lee, H.; So, M. G.; Lee, C. L. Synthesis of chemically stable ultrathin SiO2-coated core-shell perovskite QDs via modulation of ligand binding energy for all-solution-processed light-emitting diodes. ACS Appl. Mater. Interfaces 2021, 13, 29798–29808.

[48]

Wang, L. L.; Liu, H.; Zhang, Y. H.; Mohammed, O. F. Photoluminescence origin of zero-dimensional Cs4PbBr6 perovskite. ACS Energy Lett. 2020, 5, 87–99.

[49]

Ma, C.; Zhang, M. Y.; Zhang, J. R.; Liao, J. F.; Sun, H.; Ji, D. X.; Pang, R. X.; Zhang, H.; Liu, J. W.; Liu, S. Z. Highly luminescent and stable perovskite quantum dots films for light-emitting devices and information encryption. Adv. Funct. Mater. 2024, 34, 2316717.

[50]

Wang, A. F.; Liu, J. X.; Li, J. J.; Cheng, S. W.; Zhang, Y. P.; Wang, Y. C.; Xie, Y.; Yu, C.; Chu, Y.; Dong, J. J. et al. Dendrimer-encapsulated halide perovskite nanocrystals for self-powered white light-emitting glass. J. Am. Chem. Soc. 2023, 145, 28156–28165.

[51]

Xia, J. K.; Xu, J. W.; Yu, B.; Liang, X.; Qiu, Z.; Li, H.; Feng, H. J.; Li, Y. F.; Cai, Y. J.; Wei, H. Y. et al. A metal-sulfur-carbon catalyst mimicking the two-component architecture of nitrogenase. Angew. Chem., Int. Ed. 2024, 63, e202412740.

[52]

Jiang, S. Q.; Sui, H. J.; He, B. L.; Zhang, X. Y.; Zong, Z. H.; Chen, H. Y.; Tang, Q. W. Synergistic effect of alkali metal doping and thiocyanate passivation in CsPbBr3 for HTM-free all-inorganic perovskite solar cells. Dalton Trans. 2023, 52, 9772–9779.

[53]

Dong, H. R.; Zhao, H. Y.; Xuan, T. T.; Bai, W. H.; Lin, T. Y.; Cai, Y. X.; Xie, R. J. Constructing perovskite/polymer core/shell nanocrystals with simultaneous high efficiency and stability for mini-LED backlights. ACS Appl. Mater. Interfaces 2023, 15, 29297–29307.

[54]

Geng, Y. H.; Guo, J. Z.; Wang, H. Q.; Ling, S. D.; Chen, Z.; Chen, S.; Xu, J. H. Large-scale production of ligand-engineered robust lead halide perovskite nanocrystals by a droplet-based microreactor system. Small 2022, 18, 2200740.

[55]

Ye, J. Z.; Byranvand, M. M.; Martínez, C. O.; Hoye, R. L. Z.; Saliba, M.; Polavarapu, L. Defect passivation in lead-halide perovskite nanocrystals and thin films: Toward efficient LEDs and solar cells. Angew. Chem., Int. Ed. 2021, 60, 21636–21660.

[56]

Chen, J. S.; Liu, D. Z.; Al-Marri, M. J.; Nuuttila, L.; Lehtivuori, H.; Zheng, K. B. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application. Sci. China Mater. 2016, 59, 719–727.

[57]

Peng, M.; Sun, S. B.; Xu, B.; Deng, Z. T. Polymer-encapsulated halide perovskite color converters to overcome blue overshoot and cyan gap of white light-emitting diodes. Adv. Funct. Mater. 2023, 33, 2300583.

[58]

Zhang, H. D.; Lv, Y.; Chang, Y. L.; Guo, X. Y.; Zou, D. Y.; Sun, Y. F.; Zeng, Q. H.; Liu, X. Y. Ultra-small-size, highly efficient and stable CsPbBr3 quantum dots synthesized by using a cesium-dodecyl benzene sulfonic acid solution. Chem. Eng. J. 2023, 473, 145213.

[59]

He, X. Y.; Li, T. F.; Liang, Z. F.; Liu, R. M.; Ran, X.; Wang, X. J.; Guo, L. J.; Pan, C. F. Enhanced cyan photoluminescence and stability of CsPbBr3 quantum dots via surface engineering for white light-emitting diodes. Adv. Optical Mater. 2024, 12, 2302726.

Nano Research
Article number: 94907131
Cite this article:
Zhang H, Chen J, Zhu T, et al. Bright and stable quantum confined CsPbBr3 nanocrystals through post-synthetic chemical cutting and in-situ encapsulation. Nano Research, 2025, 18(2): 94907131. https://doi.org/10.26599/NR.2025.94907131
Topics:

535

Views

90

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 September 2024
Revised: 06 November 2024
Accepted: 12 November 2024
Published: 02 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return