AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (33.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Growth modes of β-Ga2O3 on h-BN: Remote epitaxy and van der Waals epitaxy

Yiming Shi1,2Junhua Meng1 ( )Zhengchang Xia2,3Jidong Huang2,3Wenkang Liu1Ji Jiang2,3Zhigang Yin2,3Jinxiang Deng1Xingwang Zhang2,3 ( )
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

The monoclinic gallium oxide (β-Ga2O3) films are deposited on both polycrystalline and single-crystalline hexagonal boron nitride (h-BN) layers with different thicknesses to investigate two-dimensional (2D)-material-assisted growth modes of β-Ga2O3 on h-BN. The potential of the sapphire substrate can penetrate the monolayer and bilayer h-BN to obtain the remote epitaxy of β-Ga2O3, regardless of the crystallinity of h-BN. Compared with the conventional and remote epitaxial β-Ga2O3 on sapphire, the van der Waals (vdW) epitaxial β-Ga2O3 on the single-crystalline h-BN exhibits higher crystallinity.

Abstract

Integrating monoclinic gallium oxide (β-Ga2O3) with two-dimensional (2D) hexagonal boron nitride (h-BN) into heterostructures is of significant importance for achieving high-power device applications. The 2D-material-assisted epitaxy provides a straightforward integration method for fabricating β-Ga2O3/h-BN vertical heterostructures. In this work, the β-Ga2O3 films were deposited on both polycrystalline and single-crystalline h-BN layers with different thicknesses, and two growth modes of β-Ga2O3 films on h-BN, remote epitaxy, and van der Waals (vdW) epitaxy, were investigated. The results show that the potential of the sapphire substrate can penetrate the monolayer and bilayer h-BN to obtain the remote epitaxy of β-Ga2O3 films, regardless of the crystallinity of h-BN. The vdW epitaxy of β-Ga2O3 film can be realized on the monocrystalline h-BN substrate. Compared with the conventional and remote epitaxial β-Ga2O3 films on sapphire substrate, the vdW epitaxial β-Ga2O3 films on the single-crystalline h-BN substrate exhibit higher crystallinity. This work indicates that the 2D-material-assisted epitaxy provides a feasible scheme for the heterogeneous integration of β-Ga2O3 films.

Electronic Supplementary Material

Download File(s)
7129_ESM.pdf (1.3 MB)

References

[1]

Pearton, S. J.; Yang, J. C.; Cary IV, P. H.; Ren, F.; Kim, J.; Tadjer, M. J.; Mastro, M. A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301.

[2]

Wu, C.; Wu, F. M.; Hu, H. Z.; Wang, S. L.; Liu, A. P.; Guo, D. Y. Review of self-powered solar-blind photodetectors based on Ga2O3. Mater. Today Phys. 2022, 28, 100883.

[3]

Zhang, J. Y.; Shi, J, L.; Qi, D. C.; Chen, L.; Zhang, K. H. L. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater. 2020, 8, 020906.

[4]

Sun, S. H.; Wang, C. L.; Alghamdi, S.; Zhou, H.; Hao, Y.; Zhang, J. C. Recent advanced ultra-wide bandgap β-Ga2O3 material and device technologies. Adv. Electron. Mater. 2024, 10, 2300844.

[5]

Nandi, A.; Cherns, D.; Sanyal, I.; Kuball, M. Epitaxial growth of ( 2¯01) β-Ga2O3 on (001) diamond substrates. Cryst. Growth Des. 2023, 23, 8290–8295.

[6]

Cheng, Z.; Wheeler, V. D.; Bai, T. Y.; Shi, J. J.; Tadjer, M. J.; Feygelson, T.; Hobart, K. D.; Goorsky, M. S.; Graham, S. Integration of polycrystalline Ga2O3 on diamond for thermal management. Appl. Phys. Lett. 2020, 116, 062105.

[7]

Nepal, N.; Katzer, D. S.; Downey, B. P.; Wheeler, V. D.; Nyakiti, L. O.; Storm, D. F.; Hardy, M. T.; Freitas, J. A.; Jin, E. N.; Vaca, D. et al. Heteroepitaxial growth of β-Ga2O3 films on SiC via molecular beam epitaxy. J. Vac. Sci. Technol. A 2020, 38, 063406.

[8]

Zhang, T.; Li, Y. F.; Zhang, Y. C.; Feng, Q.; Ning, J.; Zhang, C. F.; Zhang, J. C.; Hao, Y. Investigation of β-Ga2O3 thin films grown on epi-GaN/sapphire(0001) substrates by low pressure MOCVD. J. Alloys Compd. 2021, 859, 157810.

[9]

Xu, W. H.; You, T. G.; Wang, Y. B.; Shen, Z. H.; Liu, K.; Zhang, L. H.; Sun, H. R.; Qian, R. J.; An, Z. H.; Mu, F. W. et al. Efficient thermal dissipation in wafer-scale heterogeneous integration of single-crystalline β-Ga2O3 thin film on SiC. Fundam. Res. 2021, 1, 691–696.

[10]

Xu, W. H.; Zhao, T. C.; Zhang, L. H.; Liu, K.; Sun, H. R.; Qu, Z. Y.; You, T. G.; Yi, A. L.; Huang, K.; Han, G. Q. et al. Thermal transport properties of β-Ga2O3 thin films on Si and SiC substrates fabricated by an ion-cutting process. ACS Appl. Electron. Mater. 2024, 6, 1710–1717.

[11]

Ryu, H.; Park, H.; Kim, J. H.; Ren, F.; Kim, J. Y.; Lee, G. H.; Pearton, S. J. Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth. Appl. Phys. Rev. 2022, 9, 031305.

[12]

Park, B. I.; Kim, J.; Lu, K. Y.; Zhang, X. Y.; Lee, S.; Suh, J. M.; Kim, D. H.; Kim, H.; Kim, J. Remote epitaxy: Fundamentals, challenges, and opportunities. Nano Lett. 2024, 24, 2939–2952.

[13]

Wang, X. J.; Choi, J.; Yoo, J.; Hong, Y. J. Unveiling the mechanism of remote epitaxy of crystalline semiconductors on 2D materials-coated substrates. Nano Converg. 2023, 10, 40.

[14]

Roh, I.; Goh, S. H.; Meng, Y.; Kim, J. S.; Han, S.; Xu, Z. H.; Lee, H. E.; Kim, Y.; Bae, S. H. Applications of remote epitaxy and van der Waals epitaxy. Nano Converg. 2023, 10, 20.

[15]

Chang, C. S.; Kim, K. S.; Park, B. I.; Choi, J.; Kim, H.; Jeong, J.; Barone, M.; Parker, N.; Lee, S.; Zhang, X. Y. et al. Remote epitaxial interaction through graphene. Sci. Adv. 2023, 9, eadj5379.

[16]

Chen, Q.; Yang, K. L.; Shi, B.; Yi, X. Y.; Wang, J. X.; Li, J. M.; Liu, Z. Q. Principles for 2D-material-assisted nitrides epitaxial growth. Adv. Mater. 2023, 35, 2211075.

[17]

Qiao, K.; Liu, Y. P.; Kim, C.; Molnar, R. J.; Osadchy, T.; Li, W. H.; Sun, X. C.; Li, H. S.; Myers-Ward, R. L.; Lee, D. et al. Graphene buffer layer on SiC as a release layer for high-quality freestanding semiconductor membranes. Nano Lett. 2021, 21, 4013–4020.

[18]

Xu, L. Y.; Xu, Y.; Qu, Y. P.; Cao, B.; Wang, C. H.; Xu, K. Growth mechanism of exfoliable GaN by van der Waals epitaxy on wrinkled hexagonal boron nitride. Cryst. Growth Des. 2023, 23, 2196–2202.

[19]

Liu, F.; Wang, T.; Gao, X.; Yang, H. Y.; Zhang, Z. H.; Guo, Y. C.; Yuan, Y.; Huang, Z.; Tang, J. L.; Sheng, B. W. et al. Determination of the preferred epitaxy for III-nitride semiconductors on wet-transferred graphene. Sci. Adv. 2023, 9, eadf8484.

[20]

Lu, Y.; Krishna, S. B.; Liao, C. H.; Yang, Z. Q.; Kumar, M.; Liu, Z. Y.; Tang, X.; Xiao, N.; Hassine, M. B.; Thoroddsen, S. T. et al. Transferable Ga2O3 membrane for vertical and flexible electronics via one-step exfoliation. ACS Appl. Mater. Interfaces 2022, 14, 47922–47930.

[21]

Min, J. H.; Li, K. H.; Kim, Y. H.; Min, J. W.; Kang, C. H.; Kim, K. H.; Lee, J. S.; Lee, K. J.; Jeong, S. M.; Lee, D. S. et al. Toward large-scale Ga2O3 membranes via quasi-van der Waals epitaxy on epitaxial graphene layers. ACS Appl. Mater. Interfaces 2021, 13, 13410–13418.

[22]

Wang, Y. H.; Yang, Z. B.; Li, H. R.; Li, S.; Zhi, Y. S.; Yan, Z. Y.; Huang, X.; Wei, X. H.; Tang, W. H.; Wu, Z. P. Ultrasensitive flexible solar-blind photodetectors based on graphene/amorphous Ga2O3 van der Waals heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 47714–47720.

[23]

Kim, H.; Lu, K. Y.; Liu, Y. P.; Kum, H. S.; Kim, K. S.; Qiao, K.; Bae, S. H.; Lee, S.; Ji, Y. J.; Kim, K. H. et al. Impact of 2D–3D heterointerface on remote epitaxial interaction through graphene. ACS Nano 2021, 15, 10587–10596.

[24]

Han, X.; Yu, J. D.; Li, Z. H.; Wang, X.; Hao, Z. B.; Luo, Y.; Sun, C. Z.; Han, Y. J.; Xiong, B.; Wang, J. et al. Remote epitaxy and exfoliation of GaN via graphene. ACS Appl. Electron. Mater. 2022, 4, 5326–5332.

[25]

Li, L. H.; Chen, Y. Atomically thin boron nitride: Unique properties and applications. Adv. Funct. Mater. 2016, 26, 2594–2608.

[26]

Song, W. R.; Chen, Q.; Yang, K. L.; Liang, M.; Yi, X. Y.; Wang, J. X.; Li, J. M.; Liu, Z. Q. Recent advances in mechanically transferable III-nitride based on 2D buffer strategy. Adv. Funct. Mater. 2023, 33, 2209880.

[27]

Sundaram, S.; Li, X.; Halfaya, Y.; Ayari, T.; Patriarche, G.; Bishop, C.; Alam, S.; Gautier, S.; Voss, P. L.; Salvestrini, J. P. et al. Large-area van der Waals epitaxial growth of vertical III-nitride nanodevice structures on layered boron nitride. Adv. Mater. Interfaces 2019, 6, 1900207.

[28]

Wang, D. G.; Lu, Y.; Meng, J. H.; Zhang, X. W.; Yin, Z. G.; Gao, M. L.; Wang, Y.; Cheng, L. K.; You, J. B.; Zhang, J. C. Remote heteroepitaxy of atomic layered hafnium disulfide on sapphire through hexagonal boron nitride. Nanoscale 2019, 11, 9310–9318.

[29]

Du, D. X.; Jung, T.; Manzo, S.; LaDuca, Z.; Zheng, X. Q.; Su, K.; Saraswat, V.; McChesney, J.; Arnold, M. S.; Kawasaki, J. K. Controlling the balance between remote, pinhole, and van der Waals epitaxy of heusler films on graphene/sapphire. Nano Lett. 2022, 22, 8647–8653.

[30]

Kim, J.; Bayram, C.; Park, H.; Cheng, C. W.; Dimitrakopoulos, C.; Ott, J. A.; Reuter, K. B.; Bedell, S. W.; Sadana, D. K. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 2014, 5, 4836.

[31]

Wang, H. L.; Zhang, X. W.; Meng, J. H.; Yin, Z. G.; Liu, X.; Zhao, Y. J.; Zhang, L. Q. Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition. Small 2015, 11, 1542–1547.

[32]

Chen, J. R.; Wang, G. K.; Meng, J. H.; Cheng, Y.; Yin, Z. G.; Tian, Y.; Huang, J. D.; Zhang, S. Y.; Wu, J. L.; Zhang, X. W. Low-temperature direct growth of few-layer hexagonal boron nitride on catalyst-free sapphire substrates. ACS Appl. Mater. Interfaces 2022, 14, 7004–7011.

[33]

Geng, D. C.; Zhao, X. X.; Zhou, K.; Fu, W.; Xu, Z. P.; Pennycook, S. J.; Ang, L. K.; Yang, H. Y. From self-assembly hierarchical h-BN patterns to centimeter-scale uniform monolayer h-BN film. Adv. Mater. Interfaces 2019, 6, 1801493.

[34]

Shi, Y. M.; Meng, J. H.; Chen, J. R.; Li, Y. M.; Wu, R.; Wu, J. L.; Yin, Z. G.; Zhang, X. W. Epitaxial growth of β-Ga2O3 thin films on SrTiO3 (111) and (100) substrates by chemical vapor deposition. Appl. Surf. Sci. 2023, 616, 156578.

[35]

Wang, Y.; Li, J. L.; Zhang, T.; Wu, W. K.; Li, W. J.; Yao, Y. X.; Wang, Z. M.; Feng, Q.; Zhang, Y. C.; Zhang, J. C. et al. Enhancing the quality of homoepitaxial ( 2¯01) β-Ga2O3 thin film by MOCVD with in situ pulsed indium. Appl. Phys. Lett. 2024, 124, 072105.

[36]

Rafique, S.; Han, L.; Tadjer, M. J.; Freitas, J. A. Jr. ; Mahadik, N. A.; Zhao, H. P. Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition. Appl. Phys. Lett. 2016, 108, 182105.

[37]

Yan, S. H.; Liu, Z.; Tan, C. K.; Zhang, X. Y.; Li, S.; Shi, L.; Guo, Y. F.; Tang, W. H. Anharmonic phonon scattering study in wide bandgap semiconductor β-Ga2O3 by Raman spectroscopy. Appl. Phys. Lett. 2023, 123, 142202.

[38]

Zhang, K.; Xu, Z. W.; Zhao, J. L.; Wang, H.; Hao, J. M.; Zhang, S. N.; Cheng, H. J.; Dong, B. Anisotropies of angle-resolved polarized Raman response identifying in low miller index β-Ga2O3 single crystal. Appl. Surf. Sci. 2022, 581, 152426.

[39]

Hao, S. J.; Hetzl, M.; Schuster, F.; Danielewicz, K.; Bergmaier, A.; Dollinger, G.; Sai, Q. L.; Xia, C. T.; Hoffmann, T.; Wiesinger, M. et al. Growth and characterization of β-Ga2O3 thin films on different substrates. J. Appl. Phys. 2019, 125, 105701.

[40]

Feng, B. Y.; Li, Z. C.; Cheng, F. Y.; Xu, L. L.; Liu, T.; Huang, Z. L.; Li, F. S.; Feng, J. G.; Chen, X.; Wu, Y. et al. Investigation of β-Ga2O3 film growth mechanism on c-plane sapphire substrate by ozone molecular beam epitaxy. Phys. Status Solidi A 2021, 218, 2000457.

[41]

Lv, Y.; Ma, J.; Mi, W.; Luan, C. N.; Zhu, Z.; Xiao, H. D. Characterization of β-Ga2O3 thin films on sapphire (0001) using metal-organic chemical vapor deposition technique. Vacuum 2012, 86, 1850–1854.

[42]

Wang, G. K.; Huang, J. D.; Zhang, S. Y.; Meng, J. H.; Chen, J. R.; Shi, Y. M.; Jiang, J.; Li, J. Z.; Cheng, Y.; Zeng, L. B. et al. Wafer-scale single crystal hexagonal boron nitride layers grown by submicron-spacing vapor deposition. Small 2023, 19, 2301086.

[43]

Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.

[44]

Li, X.; Sundaram, S.; El Gmili, Y.; Ayari, T.; Puybaret, R.; Patriarche, G.; Voss, P. L.; Salvestrini, J. P.; Ougazzaden, A. Large-area two-dimensional layered hexagonal boron nitride grown on sapphire by metalorganic vapor phase epitaxy. Cryst. Growth Des. 2016, 16, 3409–3415.

[45]

Rafique, S.; Han, L.; Neal, A. T.; Mou, S.; Tadjer, M. J.; French, R. H.; Zhao, H. P. Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition. Appl. Phys. Lett. 2016, 109, 132103.

[46]

Joshi, G.; Chauhan, Y. S.; Verma, A. Temperature dependence of β-Ga2O3 heteroepitaxy on c-plane sapphire using low pressure chemical vapor deposition. J. Alloys Compd. 2021, 883, 160799.

[47]

Li, Z. M.; Jiao, T.; Li, W. C.; Wang, Z. J.; Chang, Y. C.; Shen, R. S.; Liang, H. W.; Xia, X. C.; Zhong, G. Q.; Cheng, Y. et al. Surface chemical composition and HRTEM analysis of heteroepitaxial β-Ga2O3 films grown by MOCVD. Appl. Surf. Sci. 2024, 652, 159327.

[48]

Yatskiv, R.; Vorochta, M.; Bašinová, N.; Dinhova, T. N.; Maixner, J.; Grym, J. Low-temperature gas sensing mechanism in β-Ga2O3 nanostructures revealed by near-ambient pressure XPS. Appl. Surf. Sci. 2024, 663, 160155.

Nano Research
Article number: 94907129
Cite this article:
Shi Y, Meng J, Xia Z, et al. Growth modes of β-Ga2O3 on h-BN: Remote epitaxy and van der Waals epitaxy. Nano Research, 2025, 18(2): 94907129. https://doi.org/10.26599/NR.2025.94907129
Topics:

711

Views

229

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 September 2024
Revised: 03 October 2024
Accepted: 13 November 2024
Published: 02 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return