Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Integrating monoclinic gallium oxide (β-Ga2O3) with two-dimensional (2D) hexagonal boron nitride (h-BN) into heterostructures is of significant importance for achieving high-power device applications. The 2D-material-assisted epitaxy provides a straightforward integration method for fabricating β-Ga2O3/h-BN vertical heterostructures. In this work, the β-Ga2O3 films were deposited on both polycrystalline and single-crystalline h-BN layers with different thicknesses, and two growth modes of β-Ga2O3 films on h-BN, remote epitaxy, and van der Waals (vdW) epitaxy, were investigated. The results show that the potential of the sapphire substrate can penetrate the monolayer and bilayer h-BN to obtain the remote epitaxy of β-Ga2O3 films, regardless of the crystallinity of h-BN. The vdW epitaxy of β-Ga2O3 film can be realized on the monocrystalline h-BN substrate. Compared with the conventional and remote epitaxial β-Ga2O3 films on sapphire substrate, the vdW epitaxial β-Ga2O3 films on the single-crystalline h-BN substrate exhibit higher crystallinity. This work indicates that the 2D-material-assisted epitaxy provides a feasible scheme for the heterogeneous integration of β-Ga2O3 films.
Pearton, S. J.; Yang, J. C.; Cary IV, P. H.; Ren, F.; Kim, J.; Tadjer, M. J.; Mastro, M. A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301.
Wu, C.; Wu, F. M.; Hu, H. Z.; Wang, S. L.; Liu, A. P.; Guo, D. Y. Review of self-powered solar-blind photodetectors based on Ga2O3. Mater. Today Phys. 2022, 28, 100883.
Zhang, J. Y.; Shi, J, L.; Qi, D. C.; Chen, L.; Zhang, K. H. L. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater. 2020, 8, 020906.
Sun, S. H.; Wang, C. L.; Alghamdi, S.; Zhou, H.; Hao, Y.; Zhang, J. C. Recent advanced ultra-wide bandgap β-Ga2O3 material and device technologies. Adv. Electron. Mater. 2024, 10, 2300844.
Nandi, A.; Cherns, D.; Sanyal, I.; Kuball, M. Epitaxial growth of (
Cheng, Z.; Wheeler, V. D.; Bai, T. Y.; Shi, J. J.; Tadjer, M. J.; Feygelson, T.; Hobart, K. D.; Goorsky, M. S.; Graham, S. Integration of polycrystalline Ga2O3 on diamond for thermal management. Appl. Phys. Lett. 2020, 116, 062105.
Nepal, N.; Katzer, D. S.; Downey, B. P.; Wheeler, V. D.; Nyakiti, L. O.; Storm, D. F.; Hardy, M. T.; Freitas, J. A.; Jin, E. N.; Vaca, D. et al. Heteroepitaxial growth of β-Ga2O3 films on SiC via molecular beam epitaxy. J. Vac. Sci. Technol. A 2020, 38, 063406.
Zhang, T.; Li, Y. F.; Zhang, Y. C.; Feng, Q.; Ning, J.; Zhang, C. F.; Zhang, J. C.; Hao, Y. Investigation of β-Ga2O3 thin films grown on epi-GaN/sapphire(0001) substrates by low pressure MOCVD. J. Alloys Compd. 2021, 859, 157810.
Xu, W. H.; You, T. G.; Wang, Y. B.; Shen, Z. H.; Liu, K.; Zhang, L. H.; Sun, H. R.; Qian, R. J.; An, Z. H.; Mu, F. W. et al. Efficient thermal dissipation in wafer-scale heterogeneous integration of single-crystalline β-Ga2O3 thin film on SiC. Fundam. Res. 2021, 1, 691–696.
Xu, W. H.; Zhao, T. C.; Zhang, L. H.; Liu, K.; Sun, H. R.; Qu, Z. Y.; You, T. G.; Yi, A. L.; Huang, K.; Han, G. Q. et al. Thermal transport properties of β-Ga2O3 thin films on Si and SiC substrates fabricated by an ion-cutting process. ACS Appl. Electron. Mater. 2024, 6, 1710–1717.
Ryu, H.; Park, H.; Kim, J. H.; Ren, F.; Kim, J. Y.; Lee, G. H.; Pearton, S. J. Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth. Appl. Phys. Rev. 2022, 9, 031305.
Park, B. I.; Kim, J.; Lu, K. Y.; Zhang, X. Y.; Lee, S.; Suh, J. M.; Kim, D. H.; Kim, H.; Kim, J. Remote epitaxy: Fundamentals, challenges, and opportunities. Nano Lett. 2024, 24, 2939–2952.
Wang, X. J.; Choi, J.; Yoo, J.; Hong, Y. J. Unveiling the mechanism of remote epitaxy of crystalline semiconductors on 2D materials-coated substrates. Nano Converg. 2023, 10, 40.
Roh, I.; Goh, S. H.; Meng, Y.; Kim, J. S.; Han, S.; Xu, Z. H.; Lee, H. E.; Kim, Y.; Bae, S. H. Applications of remote epitaxy and van der Waals epitaxy. Nano Converg. 2023, 10, 20.
Chang, C. S.; Kim, K. S.; Park, B. I.; Choi, J.; Kim, H.; Jeong, J.; Barone, M.; Parker, N.; Lee, S.; Zhang, X. Y. et al. Remote epitaxial interaction through graphene. Sci. Adv. 2023, 9, eadj5379.
Chen, Q.; Yang, K. L.; Shi, B.; Yi, X. Y.; Wang, J. X.; Li, J. M.; Liu, Z. Q. Principles for 2D-material-assisted nitrides epitaxial growth. Adv. Mater. 2023, 35, 2211075.
Qiao, K.; Liu, Y. P.; Kim, C.; Molnar, R. J.; Osadchy, T.; Li, W. H.; Sun, X. C.; Li, H. S.; Myers-Ward, R. L.; Lee, D. et al. Graphene buffer layer on SiC as a release layer for high-quality freestanding semiconductor membranes. Nano Lett. 2021, 21, 4013–4020.
Xu, L. Y.; Xu, Y.; Qu, Y. P.; Cao, B.; Wang, C. H.; Xu, K. Growth mechanism of exfoliable GaN by van der Waals epitaxy on wrinkled hexagonal boron nitride. Cryst. Growth Des. 2023, 23, 2196–2202.
Liu, F.; Wang, T.; Gao, X.; Yang, H. Y.; Zhang, Z. H.; Guo, Y. C.; Yuan, Y.; Huang, Z.; Tang, J. L.; Sheng, B. W. et al. Determination of the preferred epitaxy for III-nitride semiconductors on wet-transferred graphene. Sci. Adv. 2023, 9, eadf8484.
Lu, Y.; Krishna, S. B.; Liao, C. H.; Yang, Z. Q.; Kumar, M.; Liu, Z. Y.; Tang, X.; Xiao, N.; Hassine, M. B.; Thoroddsen, S. T. et al. Transferable Ga2O3 membrane for vertical and flexible electronics via one-step exfoliation. ACS Appl. Mater. Interfaces 2022, 14, 47922–47930.
Min, J. H.; Li, K. H.; Kim, Y. H.; Min, J. W.; Kang, C. H.; Kim, K. H.; Lee, J. S.; Lee, K. J.; Jeong, S. M.; Lee, D. S. et al. Toward large-scale Ga2O3 membranes via quasi-van der Waals epitaxy on epitaxial graphene layers. ACS Appl. Mater. Interfaces 2021, 13, 13410–13418.
Wang, Y. H.; Yang, Z. B.; Li, H. R.; Li, S.; Zhi, Y. S.; Yan, Z. Y.; Huang, X.; Wei, X. H.; Tang, W. H.; Wu, Z. P. Ultrasensitive flexible solar-blind photodetectors based on graphene/amorphous Ga2O3 van der Waals heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 47714–47720.
Kim, H.; Lu, K. Y.; Liu, Y. P.; Kum, H. S.; Kim, K. S.; Qiao, K.; Bae, S. H.; Lee, S.; Ji, Y. J.; Kim, K. H. et al. Impact of 2D–3D heterointerface on remote epitaxial interaction through graphene. ACS Nano 2021, 15, 10587–10596.
Han, X.; Yu, J. D.; Li, Z. H.; Wang, X.; Hao, Z. B.; Luo, Y.; Sun, C. Z.; Han, Y. J.; Xiong, B.; Wang, J. et al. Remote epitaxy and exfoliation of GaN via graphene. ACS Appl. Electron. Mater. 2022, 4, 5326–5332.
Li, L. H.; Chen, Y. Atomically thin boron nitride: Unique properties and applications. Adv. Funct. Mater. 2016, 26, 2594–2608.
Song, W. R.; Chen, Q.; Yang, K. L.; Liang, M.; Yi, X. Y.; Wang, J. X.; Li, J. M.; Liu, Z. Q. Recent advances in mechanically transferable III-nitride based on 2D buffer strategy. Adv. Funct. Mater. 2023, 33, 2209880.
Sundaram, S.; Li, X.; Halfaya, Y.; Ayari, T.; Patriarche, G.; Bishop, C.; Alam, S.; Gautier, S.; Voss, P. L.; Salvestrini, J. P. et al. Large-area van der Waals epitaxial growth of vertical III-nitride nanodevice structures on layered boron nitride. Adv. Mater. Interfaces 2019, 6, 1900207.
Wang, D. G.; Lu, Y.; Meng, J. H.; Zhang, X. W.; Yin, Z. G.; Gao, M. L.; Wang, Y.; Cheng, L. K.; You, J. B.; Zhang, J. C. Remote heteroepitaxy of atomic layered hafnium disulfide on sapphire through hexagonal boron nitride. Nanoscale 2019, 11, 9310–9318.
Du, D. X.; Jung, T.; Manzo, S.; LaDuca, Z.; Zheng, X. Q.; Su, K.; Saraswat, V.; McChesney, J.; Arnold, M. S.; Kawasaki, J. K. Controlling the balance between remote, pinhole, and van der Waals epitaxy of heusler films on graphene/sapphire. Nano Lett. 2022, 22, 8647–8653.
Kim, J.; Bayram, C.; Park, H.; Cheng, C. W.; Dimitrakopoulos, C.; Ott, J. A.; Reuter, K. B.; Bedell, S. W.; Sadana, D. K. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 2014, 5, 4836.
Wang, H. L.; Zhang, X. W.; Meng, J. H.; Yin, Z. G.; Liu, X.; Zhao, Y. J.; Zhang, L. Q. Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition. Small 2015, 11, 1542–1547.
Chen, J. R.; Wang, G. K.; Meng, J. H.; Cheng, Y.; Yin, Z. G.; Tian, Y.; Huang, J. D.; Zhang, S. Y.; Wu, J. L.; Zhang, X. W. Low-temperature direct growth of few-layer hexagonal boron nitride on catalyst-free sapphire substrates. ACS Appl. Mater. Interfaces 2022, 14, 7004–7011.
Geng, D. C.; Zhao, X. X.; Zhou, K.; Fu, W.; Xu, Z. P.; Pennycook, S. J.; Ang, L. K.; Yang, H. Y. From self-assembly hierarchical h-BN patterns to centimeter-scale uniform monolayer h-BN film. Adv. Mater. Interfaces 2019, 6, 1801493.
Shi, Y. M.; Meng, J. H.; Chen, J. R.; Li, Y. M.; Wu, R.; Wu, J. L.; Yin, Z. G.; Zhang, X. W. Epitaxial growth of β-Ga2O3 thin films on SrTiO3 (111) and (100) substrates by chemical vapor deposition. Appl. Surf. Sci. 2023, 616, 156578.
Wang, Y.; Li, J. L.; Zhang, T.; Wu, W. K.; Li, W. J.; Yao, Y. X.; Wang, Z. M.; Feng, Q.; Zhang, Y. C.; Zhang, J. C. et al. Enhancing the quality of homoepitaxial (
Rafique, S.; Han, L.; Tadjer, M. J.; Freitas, J. A. Jr. ; Mahadik, N. A.; Zhao, H. P. Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition. Appl. Phys. Lett. 2016, 108, 182105.
Yan, S. H.; Liu, Z.; Tan, C. K.; Zhang, X. Y.; Li, S.; Shi, L.; Guo, Y. F.; Tang, W. H. Anharmonic phonon scattering study in wide bandgap semiconductor β-Ga2O3 by Raman spectroscopy. Appl. Phys. Lett. 2023, 123, 142202.
Zhang, K.; Xu, Z. W.; Zhao, J. L.; Wang, H.; Hao, J. M.; Zhang, S. N.; Cheng, H. J.; Dong, B. Anisotropies of angle-resolved polarized Raman response identifying in low miller index β-Ga2O3 single crystal. Appl. Surf. Sci. 2022, 581, 152426.
Hao, S. J.; Hetzl, M.; Schuster, F.; Danielewicz, K.; Bergmaier, A.; Dollinger, G.; Sai, Q. L.; Xia, C. T.; Hoffmann, T.; Wiesinger, M. et al. Growth and characterization of β-Ga2O3 thin films on different substrates. J. Appl. Phys. 2019, 125, 105701.
Feng, B. Y.; Li, Z. C.; Cheng, F. Y.; Xu, L. L.; Liu, T.; Huang, Z. L.; Li, F. S.; Feng, J. G.; Chen, X.; Wu, Y. et al. Investigation of β-Ga2O3 film growth mechanism on c-plane sapphire substrate by ozone molecular beam epitaxy. Phys. Status Solidi A 2021, 218, 2000457.
Lv, Y.; Ma, J.; Mi, W.; Luan, C. N.; Zhu, Z.; Xiao, H. D. Characterization of β-Ga2O3 thin films on sapphire (0001) using metal-organic chemical vapor deposition technique. Vacuum 2012, 86, 1850–1854.
Wang, G. K.; Huang, J. D.; Zhang, S. Y.; Meng, J. H.; Chen, J. R.; Shi, Y. M.; Jiang, J.; Li, J. Z.; Cheng, Y.; Zeng, L. B. et al. Wafer-scale single crystal hexagonal boron nitride layers grown by submicron-spacing vapor deposition. Small 2023, 19, 2301086.
Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.
Li, X.; Sundaram, S.; El Gmili, Y.; Ayari, T.; Puybaret, R.; Patriarche, G.; Voss, P. L.; Salvestrini, J. P.; Ougazzaden, A. Large-area two-dimensional layered hexagonal boron nitride grown on sapphire by metalorganic vapor phase epitaxy. Cryst. Growth Des. 2016, 16, 3409–3415.
Rafique, S.; Han, L.; Neal, A. T.; Mou, S.; Tadjer, M. J.; French, R. H.; Zhao, H. P. Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition. Appl. Phys. Lett. 2016, 109, 132103.
Joshi, G.; Chauhan, Y. S.; Verma, A. Temperature dependence of β-Ga2O3 heteroepitaxy on c-plane sapphire using low pressure chemical vapor deposition. J. Alloys Compd. 2021, 883, 160799.
Li, Z. M.; Jiao, T.; Li, W. C.; Wang, Z. J.; Chang, Y. C.; Shen, R. S.; Liang, H. W.; Xia, X. C.; Zhong, G. Q.; Cheng, Y. et al. Surface chemical composition and HRTEM analysis of heteroepitaxial β-Ga2O3 films grown by MOCVD. Appl. Surf. Sci. 2024, 652, 159327.
Yatskiv, R.; Vorochta, M.; Bašinová, N.; Dinhova, T. N.; Maixner, J.; Grym, J. Low-temperature gas sensing mechanism in β-Ga2O3 nanostructures revealed by near-ambient pressure XPS. Appl. Surf. Sci. 2024, 663, 160155.
711
Views
229
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).