AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (19 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent progress in intrinsic defect modulation of g-C3N4 based materials and their photocatalytic properties

Sichang Wang1Liting Wang1Wan Liu2Congyu Ke1( )Miao Li1( )Junfeng Hui2( )
College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
School of Chemical Engineering, Northwest University, Xi'an 710069, China
Show Author Information

Graphical Abstract

A comprehensive review on intrinsically defective g-C3N4-based materials is presented, outlining the types of intrinsic defects and their modification strategies, along with current research in the literature. Additionally, a wide range of applications of intrinsically defect modified g-C3N4 materials are examined, including wastewater remediation, hydrogen evolution, CO2 conversion, NO removal, nitrogen fixation, photocatalytic disinfection, and H2O2 production.

Abstract

The application of solar-driven photocatalytic processes shows considerable potential for renewable energy production and environmental remediation. Graphitic carbon nitride (g-C3N4) has emerged as a highly promising metal-free photocatalyst due to its outstanding electronic structure and physicochemical properties. However, the intrinsic constraints of pristine g-C3N4, such as limited visible light absorption range, high recombination rates of photogenerated charge carriers, and a scarcity of active sites, have significantly hindered its photocatalytic performance and practical implementations. Recent studies have demonstrated that defect engineering can substantially mitigate these issues by enhancing both light absorption and charge separation efficiency, thereby improving photocatalytic performance. This review provides a comprehensive overview of intrinsically defective g-C3N4-based materials, focusing on the types of intrinsic defects, their modification strategies, and the recent advancements in the field. It also highlights the diverse applications of defect-modified g-C3N4, including wastewater remediation, hydrogen evolution, CO2 conversion, NO removal, nitrogen fixation, photocatalytic disinfection, and H2O2 production. Finally, the current challenges and future perspectives are discussed of g-C3N4-based photocatalytic materials, offering insights and practical guidance for the development of advanced g-C3N4-based photocatalysts.

References

[1]

Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

[2]

Debnath, K. B.; Mourshed, M. Challenges and gaps for energy planning models in the developing-world context. Nat. Energy 2018, 3, 172–184.

[3]

Kittner, N.; Lill, F.; Kammen, D. M. Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2017, 2, 17125.

[4]

Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.

[5]

Cortright, R. D.; Davda, R. R.; Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002, 418, 964–967.

[6]

Xiong, J.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 2018, 28, 1801983.

[7]

Song, X. L.; Chen, L.; Gao, L. J.; Ren, J. T.; Yuan, Z. Y. Engineering g-C3N4 based materials for advanced photocatalysis: Recent advances. Green Energy Environ. 2022, 9, 166–197.

[8]

Wang, Y. H.; Liu, L. Z.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. 2D graphitic carbon nitride for energy conversion and storage. Adv. Funct. Mater. 2021, 31, 2102540.

[9]

Zhang, M. L.; Yang, Y.; An, X. Q.; Hou, L. A. A critical review of g-C3N4-based photocatalytic membrane for water purification. Chem. Eng. J. 2021, 412, 128663.

[10]

Zhan, H. Y.; Zhou, R. R.; Liu, K. W.; Ma, Z. H.; Wang, P. F.; Zhan, S. H.; Zhou, Q. X. Progress and challenges of photocatalytic reduction of CO2 with g-C3N4-based photocatalysts in the context of carbon neutrality. Sci. China Mater. 2024, 67, 1740–1764.

[11]

Ajmal, Z.; Haq, M. U.; Naciri, Y.; Djellabi, R.; Hassan, N.; Zaman, S.; Murtaza, A.; Kumar, A.; Al-Sehemi, A. G.; Algarni, H. et al. Recent advancement in conjugated polymers based photocatalytic technology for air pollutants abatement: Cases of CO2, NO x , and VOCs. Chemosphere 2022, 308, 136358.

[12]

Barrio, J.; Volokh, M.; Shalom, M. Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. J. Mater. Chem. A 2020, 8, 11075–11116.

[13]

Xing, Y. P.; Wang, X. K.; Hao, S. H.; Zhang, X. L.; Wang, X.; Ma, W. X.; Zhao, G.; Xu, X. J. Recent advances in the improvement of g-C3N4 based photocatalytic materials. Chin. Chem. Lett. 2021, 32, 13–20.

[14]

Cai, M.; Wei, Y. X.; Li, Y. K.; Li, X.; Wang, S. B.; Shao, G. S.; Zhang, P. 2D semiconductor nanosheets for solar photocatalysis. EcoEnergy 2023, 1, 248–295.

[15]

Teixeira, I. F.; Barbosa, E. C. M.; Tsang, S. C. E.; Camargo, P. H. C. Carbon nitrides and metal nanoparticles: From controlled synthesis to design principles for improved photocatalysis. Chem. Soc. Rev. 2018, 47, 7783–7817.

[16]

Tian, N.; Huang, H. W.; Du, X.; Dong, F.; Zhang, Y. H. Rational nanostructure design of graphitic carbon nitride for photocatalytic applications. J. Mater. Chem. A 2019, 7, 11584–11612.

[17]

Kavitha, R.; Nithya, P. M.; Girish Kumar, S. Noble metal deposited graphitic carbon nitride based heterojunction photocatalysts. Appl. Surf. Sci. 2020, 508, 145142.

[18]

Wan, C.; Zhou, L.; Xu, S. M.; Jin, B. Y.; Ge, X.; Qian, X.; Xu, L. X.; Chen, F. Q.; Zhan, X. L.; Yang, Y. R. et al. Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid. Chem. Eng. J. 2022, 429, 132388.

[19]

Yang, J. J.; Wang, H.; Jiang, L. B.; Yu, H. B.; Zhao, Y. L.; Chen, H. Y.; Yuan, X. Z.; Liang, J.; Li, H.; Wu, Z. B. Defective polymeric carbon nitride: Fabrications, photocatalytic applications and perspectives. Chem. Eng. J. 2022, 427, 130991.

[20]

Maarisetty, D.; Baral, S. S. Defect engineering in photocatalysis: Formation, chemistry, optoelectronics, and interface studies. J. Mater. Chem. A 2020, 8, 18560–18604.

[21]

Li, Y. H.; He, Z. J.; Liu, L.; Jiang, Y.; Ong, W. J.; Duan, Y. Y.; Ho, W. K.; Dong, F. Inside-and-out modification of graphitic carbon nitride (g-C3N4) photocatalysts via defect engineering for energy and environmental science. Nano Energy 2023, 105, 108032.

[22]

Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.

[23]

Xu, Y. S.; Fan, M. J.; Yang, W. J.; Xiao, Y. H.; Zeng, L. T.; Wu, X.; Xu, Q. H.; Su, C. L.; He, Q. J. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production. Adv. Mater. 2021, 33, 2101455.

[24]

Corp, K. L.; Schlenker, C. W. Ultrafast spectroscopy reveals electron-transfer cascade that improves hydrogen evolution with carbon nitride photocatalysts. J. Am. Chem. Soc. 2017, 139, 7904–7912.

[25]

Jiang, L. B.; Yang, J. J.; Yuan, X. Z.; Guo, J. Y.; Liang, J.; Tang, W. W.; Chen, Y. N.; Li, X. D.; Wang, H.; Chu, W. Defect engineering in polymeric carbon nitride photocatalyst: Synthesis, properties and characterizations. Adv. Colloid Interface Sci. 2021, 296, 102523.

[26]

Luo, L.; Wang, K. R.; Gong, Z. Y.; Zhu, H. X.; Ma, J. N.; Xiong, L. Q.; Tang, J. W. Bridging-nitrogen defects modified graphitic carbon nitride nanosheet for boosted photocatalytic hydrogen production. Int. J. Hydrogen Energy 2021, 46, 27014–27025.

[27]

Xie, C.; Yan, D. F.; Li, H.; Du, S. Q.; Chen, W.; Wang, Y. Y.; Zou, Y. Q.; Chen, R.; Wang, S. Y. Defect chemistry in heterogeneous catalysis: Recognition, understanding, and utilization. ACS Catal. 2020, 10, 11082–11098.

[28]

Hou, S. Q.; Gao, X. C.; Lv, X. Y.; Zhao, Y. L.; Yin, X. T.; Liu, Y.; Fang, J.; Yu, X. X.; Ma, X. G.; Ma, T. Y. et al. Decade milestone advancement of defect-engineered g-C3N4 for solar catalytic applications. Nano-Micro Lett. 2024, 16, 70.

[29]

Wang, G. L.; Zhao, Y.; Ma, H. R.; Zhang, C. J.; Dong, X. L.; Zhang, X. F. Enhanced peroxymonosulfate activation on dual active sites of N vacancy modified g-C3N4 under visible-light assistance and its selective removal of organic pollutants. Sci. Total Environ. 2021, 756, 144139.

[30]

Jiao, S. L.; Fu, X. W.; Zhang, L.; Zeng, Y. J.; Huang, H. W. Point-defect-optimized electron distribution for enhanced electrocatalysis: Towards the perfection of the imperfections. Nano Today 2020, 31, 100833.

[31]

Niu, P.; Yin, L. C.; Yang, Y. Q.; Liu, G.; Cheng, H. M. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies. Adv. Mater. 2014, 26, 8046–8052.

[32]

Guo, F.; Wang, L. J.; Sun, H. R.; Li, M. Y.; Shi, W. L.; Lin, X. A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen. Int. J. Hydrogen Energy 2020, 45, 30521–30532.

[33]

Zhao, C.; Shi, C. J.; Li, Q.; Wang, X. Y.; Zeng, G.; Ye, S.; Jiang, B. J.; Liu, J. Nitrogen vacancy-rich porous carbon nitride nanosheets for efficient photocatalytic H2O2 production. Mater. Today Energy 2022, 24, 100926.

[34]

Tan, J.; Tian, N.; Li, Z. F.; Li, J.; Yao, X. L.; Vakili, M.; Lu, Y.; Zhang, T. T. Intrinsic defect engineering in graphitic carbon nitride for photocatalytic environmental purification: A review to fill existing knowledge gaps. Chem. Eng. J. 2021, 421, 127729.

[35]

Shen, M.; Zhang, L. X.; Wang, M.; Tian, J. J.; Jin, X. X.; Guo, L. M.; Wang, L. Z.; Shi, J. L. Carbon-vacancy modified graphitic carbon nitride: enhanced CO2 photocatalytic reduction performance and mechanism probing. J. Mater. Chem. A. 2019, 7, 1556–1563.

[36]

Liang, Q. H.; Li, Z.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 2015, 25, 6885–6892.

[37]

Gao, S. Y.; Wang, X. Y.; Song, C. J.; Zhou, S. J.; Yang, F.; Kong, Y. Engineering carbon-defects on ultrathin g-C3N4 allows one-pot output and dramatically boosts photoredox catalytic activity. Appl. Catal. B: Environ. 2021, 295, 120272.

[38]

Iqbal, O.; Ali, H.; Li, N.; Al-Sulami, A. I.; Alshammari, K. F.; Abd-Rabboh, H. S. M.; Al-Hadeethi, Y.; Din, I. U.; Alharthi, A. I.; Altamimi, R. et al. A review on the synthesis, properties, and characterizations of graphitic carbon nitride (g-C3N4) for energy conversion and storage applications. Mater. Today Phys. 2023, 34, 101080.

[39]

Lau, V. W. H.; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel, V.; Senker, J.; Blum, V.; Lotsch, B. V. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 2016, 7, 12165.

[40]

Tan, H.; Gu, X. M.; Kong, P.; Lian, Z.; Li, B.; Zheng, Z. F. Cyano group modified carbon nitride with enhanced photoactivity for selective oxidation of benzylamine. Appl. Catal. B: Environ. 2019, 242, 67–75.

[41]

Zhao, B. B.; Xu, J. C.; Liu, Y. P.; Fan, J. J.; Yu, H. G. Amino group-rich porous g-C3N4 nanosheet photocatalyst: Facile oxalic acid-induced synthesis and improved H2-evolution activity. Ceram. Int. 2021, 47, 18295–18303.

[42]

Niu, P.; Qiao, M.; Li, Y. F.; Huang, L.; Zhai, T. Y. Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy 2018, 44, 73–81.

[43]

Ma, H. X.; Jia, Y. F.; Zhu, G. Q.; Zhang, F. C.; Rhee, S.; Lee, B.; Liu, C. L. Study of cyano and hydroxyl groups modification on the properties of porous carbon nitride synthesized by using a salt assistant method. Appl. Surf. Sci. 2020, 507, 144885.

[44]

Li, H. L.; Li, F. P.; Wang, Z. Y., Jiao, Y. C.; Liu, Y. Y.; Wang, P.; Zhang, X. Y.; Qin, X. Y.; Dai, Y.; Huang, B. B. Fabrication of carbon bridged g-C3N4 through supramolecular self-assembly for enhanced photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2018, 229, 114–120.

[45]

Bao, N.; Hu, X. D.; Zhang, Q. Z.; Miao, X. H.; Jie, X. Y.; Zhou, S. Synthesis of porous carbon-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 2017, 403, 682–690.

[46]

Wang, X. Y.; Sang, L. B.; Zhang, L.; Yang, G.; Guo, Y. H.; Yang, Y. X. Controllable synthesis for carbon self-doping and structural defect co-modified g-C3N4: Enhanced photocatalytic oxidation performance and the mechanism insight. J. Alloys Compd. 2023, 941, 168921.

[47]

Xing, J. N.; Huang, X.; Yong, X.; Li, X.; Li, J.; Wang, J. K.; Wang, N.; Hao, H. X. N-doped synergistic porous thin-walled g-C3N4 nanotubes for efficient tetracycline photodegradation. Chem. Eng. J. 2023, 455, 140570.

[48]

Zhu, Y. T.; Yuan, D. D.; Zhang, H.; Xu, T.; Sun, L. T. Atomic-scale insights into the formation of 2D crystals from in situ transmission electron microscopy. Nano Res. 2021, 14, 1650–1658.

[49]

Lin, B.; Yang, G. D.; Wang, L. Z. Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2019, 58, 4587–4591.

[50]

Zhan, B. B.; Hao, Y. L.; Qi, X. S.; Qu, Y. P.; Ding, J. F.; Yang, J. L.; Gong, X.; Chen, Y. L.; Peng, Q.; Zhong, W. Multifunctional cellular carbon foams derived from chitosan toward self-cleaning, thermal insulation, and highly efficient microwave absorption properties. Nano Res. 2024, 17, 927–938.

[51]

Whitehead, C. B.; Finke, R. G. Particle formation mechanisms supported by in situ synchrotron XAFS and SAXS studies: A review of metal, metal-oxide, semiconductor and selected other nanoparticle formation reactions. Mate. Adv. 2021, 2, 6532–6568.

[52]

Yang, P. J.; Zhuzhang, H. Y.; Wang, R. R.; Lin, W.; Wang, X. C. Carbon vacancies in a melon polymeric matrix promote photocatalytic carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 1134–1137.

[53]

Zhao, D. M.; Dong, C. L.; Wang, B.; Chen, C.; Huang, Y. C.; Diao, Z. D.; Li, S. Z.; Guo, L. J.; Shen, S. H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545.

[54]

Guo, L. P.; Gao, J. Y.; Li, M. X.; Xie, Y.; Chen, H.; Wang, S. J.; Li, Z. Z.; Wang, X. P.; Zhou, W. Synergy of defect engineering and curvature effect for porous graphite carbon nitride nanotubes promoted photocatalytic hydrogen evolution. EcoEnergy 2023, 1, 437–447.

[55]

Shen, H. D.; Zhan, X. Y.; Hong, S.; Xu, L.; Yang, C. M.; Robertson, A. W.; Hao, L. D.; Fu, F.; Sun, Z. Y. Ultrafine MoO x clusters anchored on g-C3N4 with nitrogen/oxygen dual defects for synergistic efficient O2 activation and tetracycline photodegradation. Nano Res. 2023, 16, 10713–10723.

[56]

Preeyanghaa, M.; Erakulan, E. S.; Thapa, R.; Ashokkumar, M.; Neppolian, B. Scrutinizing the role of tunable carbon vacancies in g-C3N4 nanosheets for efficient sonophotocatalytic degradation of Tetracycline in diverse water matrices: Experimental study and theoretical calculation. Chem. Eng. J. 2023, 452, 139437.

[57]

Song, P.; Du, J.; Ma, X. L.; Shi, Y. M.; Fang, X. Y.; Liu, D. B.; Wei, S. Q.; Liu, Z. F.; Cao, Y. Y.; Lin, B. et al. Design of Bi4O5Br2/g-C3N4 heterojunction for efficient photocatalytic removal of persistent organic pollutants from water. EcoEnergy 2023, 1, 197–206.

[58]

Fan, E. C.; Xu, H. L.; Sun, S. P.; Huang, C. N.; Li, M. L.; Fan, B. B.; Shao, G.; Liu, W.; Wang, H. L.; Lu, H. X. et al. Significant enhancement of photocatalytic activity of g-C3N4/vermiculite composite by the introduction of nitrogen defects. Colloids Surf. A 2023, 669, 131510.

[59]

Liang, X. F.; Wang, G. L.; Dong, X. L.; Wang, G. W.; Ma, H. C.; Zhang, X. F. Graphitic carbon nitride with carbon vacancies for photocatalytic degradation of bisphenol A. ACS Appl. Nano Mater. 2019, 2, 517–524.

[60]

Li, Y. W.; Zhang, Z. F.; Li, S. Z.; Liu, L. Y.; Ma, W. L. Solar-induced efficient propylparaben photodegradation by nitrogen vacancy engineered reticulate g-C3N4: Morphology, activity and mechanism. Sci. Total Environ. 2023, 856, 159247.

[61]

Zhang, Z.; Zheng, Y. M.; Xie, H.; Zhao, J. J.; Guo, X. L.; Zhang, W. J.; Fu, Q. P.; Wang, S. H.; Xu, Q.; Huang, Y. Synthesis of g-C3N4 microrods with superficial C, N dual vacancies for enhanced photocatalytic organic pollutant removal and H2O2 production. J. Alloys Compd. 2022, 904, 164028.

[62]

Guo, Y. J.; Liu, G.; Yin, W. H.; Zhang, Y. S.; Shi, L. Precise defect engineering g-C3N4 fabrication to improve hydrogen production performance. Fuel 2024, 362, 130743.

[63]

Gu, Y. P.; Li, Y. K.; Feng, H. Q.; Han, Y. A.; Li, Z. J. Built-in electric field induced S-scheme g-C3N4 homojunction for efficient photocatalytic hydrogen evolution: Interfacial engineering and morphology control. Nano Res. 2024, 17, 4961–4970.

[64]

Hu, J.; Liu, H. Y.; Sun, C.; Wu, L. X.; Jiao, F. P. Precise defect engineering with ultrathin porous frameworks on g-C3N4 for synergetic boosted photocatalytic hydrogen evolution. Ind. Eng. Chem. Res. 2024, 63, 2665–2675.

[65]

Yang, B.; Han, J.; Zhang, Q.; Liao, G. F.; Cheng, W. J.; Ge, G. X.; Liu, J. C.; Yang, X. D.; Wang, R. J.; Jia, X. Carbon defective g-C3N4 thin-wall tubes for drastic improvement of photocatalytic H2 production. Carbon 2023, 202, 348–357.

[66]

Wang, H. T.; Yu, L. L.; Peng, J. H.; Zou, J.; Gong, W. P.; Jiang, J. Z. Experimental and theoretical investigation of sulfur-doped g-C3N4 nanosheets/FeCo2O4 nanorods S-scheme heterojunction for photocatalytic H2 evolution. Nano Res. 2024, 17, 8007–8016.

[67]

Hou, S. Q.; Gao, X. C.; Wang, S. J.; Yu, X. X.; Liao, J. Y.; Su, D. W. Precise defect engineering on graphitic carbon nitrides for boosted solar H2 production. Small 2024, 20, 2302500.

[68]

Qin, Y. Y.; Lu, J.; Zhao, X. Y.; Lin, X. Y.; Hao, Y.; Huo, P. W.; Meng, M. J.; Yan, Y. S. Nitrogen defect engineering and π-conjugation structure decorated g-C3N4 with highly enhanced visible-light photocatalytic hydrogen evolution and mechanism insight. Chem. Eng. J. 2021, 425, 131844.

[69]

Shan, X.; Ge, G. F.; Zhao, Z. K. Fabrication of tubular g-C3N4 with N-defects and extended π-conjugated system for promoted photocatalytic hydrogen production. ChemCatChem 2019, 11, 1534–1544.

[70]

Wang, H. T.; Jiang, J. Z.; Yu, L. L.; Peng, J. H.; Song, Z.; Xiong, Z. G.; Li, N.; Xiang, K.; Zou, J.; Hsu, J. P. et al. Tailoring advanced N-defective and S-doped g-C3N4 for photocatalytic H2 evolution. Small 2023, 19, 2301116.

[71]

Tian, Y. X.; Zeng, D. N.; Shen, T. Z.; Guan, R. F.; Shi, W. Y. One-step synthesis of S-doped C-vacancy g-C3N4 with honeycomb porous nanosheets structure for efficient visible-light-driven hydrogen evolution. Fuel 2024, 357, 129927.

[72]

Pu, W. J.; Zhou, Y. Q.; Yang, L. F.; Gong, H. F.; Li, Y. H.; Yang, Q. Y.; Zhang, D. Q. High-efficiency crystalline carbon nitride photocatalysts: Status and perspectives. Nano Res. 2024, 17, 7840–7863.

[73]

Wang, X. C.; Blechert, S.; Antonietti, M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2012, 2, 1596–1606.

[74]

Cao, S. W.; Li, H.; Tong, T.; Chen, H. C.; Yu, A. C.; Yu, J. G.; Chen, H. M. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1802169.

[75]

Yang, Z. D.; Zhang, Y.; Zhang, H. X.; Zhao, J. H.; Shi, H.; Zhang, M.; Yang, H. Q.; Zheng, Z. F.; Yang, P. J. Nitrogen vacancies in polymeric carbon nitrides promote CO2 photoreduction. J. Catal. 2022, 409, 12–23.

[76]

Shi, H. N.; Long, S. R.; Hou, J. G.; Ye, L.; Sun, Y. W.; Ni, W. J.; Song, C. S.; Li, K. Y.; Gurzadyan, G. G.; Guo, X. W. Defects promote ultrafast charge separation in graphitic carbon nitride for enhanced visible-light-driven CO2 reduction activity. Chem. —Eur. J. 2019, 25, 5028–5035.

[77]

Song, X. H.; Zhang, X. Y.; Li, X.; Che, H. N.; Huo, P. W.; Ma, C. C.; Yan, Y. S.; Yang, G. Y. Enhanced light utilization efficiency and fast charge transfer for excellent CO2 photoreduction activity by constructing defect structures in carbon nitride. J. Colloid Interface Sci. 2020, 578, 574–583.

[78]

Gong, Y. N.; Shao, B. Z.; Mei, J. H.; Yang, W.; Zhong, D. C.; Lu, T. B. Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Res. 2022, 15, 551–556.

[79]

Zhou, Z. R.; Guo, W. Y.; Yang, T. Y.; Zheng, D. D.; Fang, Y. X.; Lin, X. H.; Hou, Y. D.; Zhang, G. G.; Wang, S. B. Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chin. J. Struct. Chem. 2024, 43, 100245.

[80]

Hou, J. H.; Yang, M. Y.; Dou, Q.; Chen, Q.; Wang, X. Z.; Hu, C. G.; Paul, R. Defect engineering in polymeric carbon nitride with accordion structure for efficient photocatalytic CO2 reduction and H2 production. Chem. Eng. J. 2022, 450, 138425.

[81]

Liu, Y. Z.; Zhao, L.; Zeng, X. H.; Xiao, F.; Fang, W.; Du, X.; He, X.; Wang, D. H.; Li, W. X.; Chen, H. Efficient photocatalytic reduction of CO2 by improving adsorption activation and carrier utilization rate through N-vacancy g-C3N4 hollow microtubule. Mater. Today Energy 2023, 31, 101211.

[82]

Ma, W.; Wang, N.; Guo, Y.; Yang, L. Q.; Lv, M. F.; Tang, X.; Li, S. T. Enhanced photoreduction CO2 activity on g-C3N4: By synergistic effect of nitrogen defective-enriched and porous structure, and mechanism insights. Chem. Eng. J. 2020, 388, 124288.

[83]

Nor, N. U. M.; Mazalan, E.; Amin, N. A. S. Insights into enhancing photocatalytic reduction of CO2: Substitutional defect strategy of modified g-C3N4 by experimental and theoretical calculation approaches. J. Alloys Compd. 2021, 871, 159464.

[84]

Li, Y. H.; Ren, Z. T.; He, Z. J.; Ouyang, P.; Duan, Y. Y.; Zhang, W. D.; Lv, K. L.; Dong, F. Crystallinity-defect matching relationship of g-C3N4: Experimental and theoretical perspectives. Green Energy Environ. 2023, 9, 623–658.

[85]

Zhang, J.; Chen, J. W.; Wan, Y. F.; Liu, H. W.; Chen, W.; Wang, G.; Wang, R. L. Defect engineering in atomic-layered graphitic carbon nitride for greatly extended visible-light photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 13805–13812.

[86]

Gu, Z. Y.; Jin, M. D.; Wang, X.; Zhi, R. T.; Hou, Z. H.; Yang, J.; Hao, H. F.; Zhang, S. Y.; Wang, X. L.; Zhou, E. P. et al. Recent advances in g-C3N4-based photocatalysts for NO x removal. Catalysts 2023, 13, 192.

[87]

Liao, J. Z.; Cui, W.; Li, J. Y.; Sheng, J. P.; Wang, H.; Dong, X. A.; Chen, P.; Jiang, G. M.; Wang, Z. M.; Dong, F. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. Chem. Eng. J. 2020, 379, 122282.

[88]

Wang, Z. Y.; Huang, Y.; Chen, M. J.; Shi, X. J.; Zhang, Y. F.; Cao, J. J.; Ho, W.; Lee, S. C. Roles of N-vacancies over porous g-C3N4 microtubes during photocatalytic NO x removal. ACS Appl. Mater. Interfaces 2019, 11, 10651–10662.

[89]

Duan, Y. Y.; Li, X. F.; Lv, K. L.; Zhao, L.; Liu, Y. Flower-like g-C3N4 assembly from holy nanosheets with nitrogen vacancies for efficient NO abatement. Appl. Surf. Sci. 2019, 492, 166–176.

[90]

Huang, X. Y.; Li, X. Y.; Chen, A. K.; Gu, H. F.; Li, S. Y.; Hou, T. L.; Zhu, S. W.; Yu, S.; Song, Y.; Zhang, J. T. Electronic structure engineering of single atomic sites by plasmon-induced hot electrons for highly efficient and selective photocatalysis. Nano Res. 2024, 17, 6960–6967.

[91]

Li, Y. H.; Ho, W.; Lv, K. L.; Zhu, B. C.; Lee, S. C. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets. Appl. Surf. Sci. 2018, 430, 380–389.

[92]

Dong, G. H.; Jacobs, D. L.; Zang, L.; Wang, C. Y. Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets. Appl. Catal. B: Environ. 2017, 218, 515–524.

[93]

Wang, H.; He, W. J.; Dong, X. A.; Wang, H. Q.; Dong, F. In situ FT-IR investigation on the reaction mechanism of visible light photocatalytic NO oxidation with defective g-C3N4. Sci. Bull. 2018, 63, 117–125.

[94]

Shen, H. D.; Yang, M. M.; Hao, L. D.; Wang, J. R.; Strunk, J.; Sun, Z. Y. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Res. 2022, 15, 2773–2809.

[95]

Nguyen, D. L. T.; Tekalgne, M. A.; Nguyen, T. H. C.; Dinh, M. T. N.; Sana, S. S.; Grace, A. N.; Shokouhimehr, M.; Vo, D. V. N.; Cheng, C. K.; Nguyen, C. C. et al. Recent development of high-performance photocatalysts for N2 fixation: A review. J. Environ. Chem. Eng. 2021, 9, 104997.

[96]

Gong, Y. Y.; Xu, Z. D.; Wu, J.; Zhong, J. B.; Ma, D. M. Enhanced photocatalytic hydrogen production performance of g-C3N4 with rich carbon vacancies. Appl. Surf. Sci. 2024, 657, 159790.

[97]

Zhang, L.; Hou, S. Q.; Wang, T. Y.; Liu, S. X.; Gao, X. C.; Wang, C. Y.; Wang, G. X. Recent advances in application of graphitic carbon nitride-based catalysts for photocatalytic nitrogen fixation. Small 2022, 18, 2202252.

[98]

Li, L. J.; Zhang, P.; Li, N.; Reyila, T.; Yu, Y. C.; Su, X. P.; Peng, C.; Han, L. J. Application of g-C3N4-based photocatalysts for N2 photofixation. J. Environ. Chem. Eng. 2024, 12, 112142.

[99]

Zhang, Y. N.; Li, S.; Sun, C.; Cao, X. R.; Wang, X.; Yao, J. N. Defective g-C3N4 supported Ru3 single-cluster catalyst for ammonia synthesis through parallel reaction pathways. Nano Res. 2023, 16, 3580–3587.

[100]

Li, Y. S.; Ti, M. R.; Zhao, D. X.; Zhang, Y.; Wu, L.; He, Y. J. Facile synthesis of nitrogen-vacancy pothole-rich few-layer g-C3N4 for photocatalytic nitrogen fixation into nitrate and ammonia. J. Alloys Compd. 2021, 870, 159298.

[101]

Wang, W. K.; Zhou, H. J.; Liu, Y. Y.; Zhang, S. B.; Zhang, Y. X.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Formation of B-N-C coordination to stabilize the exposed active nitrogen atoms in g-C3N4 for dramatically enhanced photocatalytic ammonia synthesis performance. Small 2020, 16, 1906880.

[102]

Xue, Y. J.; Guo, Y. C.; Liang. Z. Q.; Cui, H. Z.; Tian, J. Porous g-C3N4 with nitrogen defects and cyano groups for excellent photocatalytic nitrogen fixation without co-catalysts. J. Colloid. Interface Sci. 2019, 556, 206–213.

[103]

Sun, C.; Chen, Z. Q.; Cui, J.; Li, K.; Qu, H. X.; Xie, H. F.; Zhong, Q. Site-exposed Ti3C2 MXene anchored in N-defect g-C3N4 heterostructure nanosheets for efficient photocatalytic N2 fixation. Catal. Sci. Technol. 2021, 11, 1027–1038.

[104]

Song, J.; Dai, J.; Zhang, P.; Liu, Y. T.; Yu, J. Y.; Ding, B. g-C3N4 encapsulated ZrO2 nanofibrous membrane decorated with CdS quantum dots: A hierarchically structured, self-supported electrocatalyst toward synergistic NH3 synthesis. Nano Res. 2021, 14, 1479–1487.

[105]

Ye, X. L.; Shi, S. T.; Zeng, Y. B.; Ding, M. Y.; Wu, Z. K. Carbon defective carbon nitride with large specific surface area by hot oxygen etching for promoting photocatalytic performance. Colloid Surf. A 2022, 632, 127732.

[106]

Cao, S. H.; Chen, H.; Jiang, F.; Wang, X. Nitrogen photofixation by ultrathin amine-functionalized graphitic carbon nitride nanosheets as a gaseous product from thermal polymerization of urea. Appl. Catal. B: Environ. 2018, 224, 222–229.

[107]

Dong, G. H.; Ho, W.; Wang, C. Y. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 2015, 3, 23435–23441.

[108]

Xue, Y. J.; Ma, C. Q.; Yang, Q. F.; Wang, X. Y.; An, S. N.; Zhang, X. L.; Tian, J. Construction of g-C3N4 with three coordinated nitrogen (N3C) vacancies for excellent photocatalytic activities of N2 fixation and H2O2 production. Chem. Eng. J. 2023, 457, 141146.

[109]

Zhang, Y.; Di. J.; Ding, P. H.; Zhao, J. Z.; Gu, K. Z.; Chen, X. L.; Yan, C.; Yin, S.; Xia, J. X.; Li, H. M. Ultrathin g-C3N4 with enriched surface carbon vacancies enables highly efficient photocatalytic nitrogen fixation. J. Colloid Interface Sci. 2019, 553, 530–539.

[110]

Kong, Y.; Lv, C. D.; Zhang, C. M.; Chen, G. Cyano group modified g-C3N4: Molten salt method achievement and promoted photocatalytic nitrogen fixation activity. Appl. Surf. Sci. 2020, 515, 146009.

[111]

Xu, J.; Wang, Z. P.; Zhu, Y. F. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering. J Mater. Sci. Technol. 2020, 49, 133–143.

[112]

Zhen, X. L.; Fan, C. Z.; Tang, L.; Luo, J.; Zhong, L. R.; Gao, Y. Y.; Zhang, M. J.; Zheng, J. F. Advancing charge carriers separation and transformation by nitrogen self-doped hollow nanotubes g-C3N4 for enhancing photocatalytic degradation of organic pollutants. Chemosphere 2023, 312, 137145.

[113]

Chen, J. Q.; Lin, W. T.; Xie, L. Y.; Huang, J. H.; Wang, W. J. Templated fabrication of graphitic carbon nitride with ordered mesoporous nanostructures for high-efficient photocatalytic bacterial inactivation under visible light irradiation. J. Nanomater. 2019, 2019, 3242136.

[114]

Wang, J.; Dou, M. M.; Wang, X. Y.; Gao, B. R.; Zhuang, T.; Ma, Z. K. Synergetic mechanism of defective g-C3N4 activated persulfate on removal of antibiotics and resistant bacteria: ROSs transformation, electron transfer and noncovalent interaction. Chemosphere 2022, 294, 133741.

[115]
Zhong, K. Q.; Xie, D. H.; Liu, Y. J.; Guo, P. C.; Sheng, G. P.; Modulation of ultrathin nanosheet structure and nitrogen defects in graphitic carbon nitride for efficient photocatalytic bacterial inactivation. Water Res. X 2023 , 20, 100193.
[116]

Liu, H. P.; Ma, S. L.; Shao, L.; Liu, H. T.; Gao, Q. C.; Li, B. J.; Fu, H. C.; Fu, S.; Ye, H. G.; Zhao, F. Y. et al. Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection. Appl. Catal. B: Environ. 2020, 261, 118201.

[117]

Dahlan, N. A. N.; Putri, L, K.; Er, C. C.; Ng, B. J.; Ooi, C. W.; Tan, L. L.; Chai, S. P. Effective low-powered photocatalytic disinfection via synchronous introduction of oxygen dopants and carbon defects in carbon nitride. ACS Appl. Mater. Interfaces 2023, 15, 53371–53381.

[118]

Huang, X.; Song, M.; Zhang, J.; Zhang, J. J.; Liu, W.; Zhang, C.; Zhang, W.; Wang, D. L. Investigation of MXenes as oxygen reduction electrocatalyst for selective H2O2 generation. Nano Res. 2022, 15, 3927–3932.

[119]

Pi, L.; Cai, J. H.; Xiong, L. L.; Cui, J. X.; Hua, H. L.; Tang, D. D.; Mao, X. H. Generation of H2O2 by on-site activation of molecular dioxygen for environmental remediation applications: A review. Chem. Eng. J. 2020, 389, 123420.

[120]

He, Q.; Viengkeo, B.; Zhao, X.; Qin, Z. Y.; Zhang, J.; Yu, X. H.; Hu, Y. P.; Huang, W.; Li, Y. G. Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production. Nano Res. 2023, 16, 4524–4530.

[121]

Fattahimoghaddam, H.; Mahvelati-Shamsabadi, T.; Lee, B. K. Enhancement in photocatalytic H2O2 production over g-C3N4 nanostructures: a collaborative approach of nitrogen deficiency and supramolecular precursors. ACS Sustain. Chem. Eng. 2021, 9, 4520–4530.

[122]

Luo, J.; Liu, Y. N.; Fan, C. Z.; Tang, L.; Yang, S. J.; Liu, M. L.; Wang, M. E.; Feng, C. Y.; Ouyang, X. L.; Wang, L. L. et al. Direct attack and indirect transfer mechanisms dominated by reactive oxygen species for photocatalytic H2O2 production on g-C3N4 possessing nitrogen vacancies. ACS Catal. 2021, 11, 11440–11450.

[123]

Zhang, H.; Jia, L. H.; Wu, P.; Xu, R. J.; He, J.; Jiang, W. Improved H2O2 photogeneration by KOH-doped g-C3N4 under visible light irradiation due to synergistic effect of N defects and K modification. Appl. Surf. Sci. 2020, 527, 146584.

[124]

Li, R. J.; Deng, Q. F.; Chen, A. L.; Zhong, Y. J.; Yang, R. Synthesis of double defects in g-C3N4 to enhance the H2O2 production by dual-electron O2 reduction. ChemSusChem 2023, 16, e202300763.

[125]

Shi, L.; Yang, L. Q.; Zhou, W.; Liu, Y. Y.; Yin, L. S.; Hai, X.; Song, H.; Ye, J. H. Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production. Small 2018, 14, 1703142.

[126]

Li, J. N.; Huang, J. H.; Zeng, G. M.; Zhang, C. Y.; Yu, H. B.; Wan, Q. F.; Yi, K. X.; Zhang, W.; Pang, H. L.; Liu, S. et al. Efficient photosynthesis of H2O2 via two-electron oxygen reduction reaction by defective g-C3N4 with terminal cyano groups and nitrogen vacancies. Chem. Eng. J. 2023, 463, 142512.

[127]

Li, R. J.; Zheng, M.; Zhou, X.; Zhang, D.; Shi, Y.; Li, C. X.; Yang, M. Carbon vacancies in porous g-C3N4 nanosheets induced robust H2O2 production for highly efficient photocatalysis-self-Fenton system for metronidazole degradation. Chem. Eng. J. 2023, 464, 142584.

Nano Research
Article number: 94907125
Cite this article:
Wang S, Wang L, Liu W, et al. Recent progress in intrinsic defect modulation of g-C3N4 based materials and their photocatalytic properties. Nano Research, 2025, 18(2): 94907125. https://doi.org/10.26599/NR.2025.94907125

240

Views

45

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 September 2024
Revised: 07 November 2024
Accepted: 11 November 2024
Published: 07 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return