Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The rising demand for portable and environmentally sustainable energy for use in the electronic/electrical equipment, automobile, and so on has resulted in an ever-increasing development in the rechargeable metal-ion-battery technologies. The anode is a crucial component of the battery system, influencing both the cost and overall performance of the batteries. To optimize the electrochemical properties of anode materials, constructing the dual-phase structure has been identified as an effective strategy. The mutual buffering between phases helps alleviate dramatic volume changes, while the abundant interfaces increase active sites and enhance the ion transport. In this review, the research and development of main anode materials with dual-phase configurations in Li/Mg ion batteries are summarized and discussed. The fabrication methods, regulation strategy, electrochemical performance, as well as enhancement mechanisms of dual-phase Li4Ti5O12-TiO2 composites, TiO2-based composites, alloy-type materials, and other types of dual-phase anodes are reviewed and compared in detail. Moreover, some perspectives about the future progress of dual-phase anode materials for metal-ion batteries are proposed.
Goodenough, J. B. Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 2014, 7, 14–18.
Mitali, J.; Dhinakaran, S.; Mohamad, A. A. Energy storage systems: A review. Energy Storage Sav. 2022, 1, 166–216.
Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.
Blumbergs, E.; Serga, V.; Platacis, E.; Maiorov, M.; Shishkin, A. Cadmium recovery from spent Ni-Cd batteries: A brief review. Metals 2021, 11, 1714.
Zhu, W. H.; Zhu, Y.; Davis, Z.; Tatarchuk, B. J. Energy efficiency and capacity retention of Ni-MH batteries for storage applications. Appl. Energy 2013, 106, 307–313.
Blomgren, G. E. The development and future of lithium ion batteries. J. Electrochem. Soc. 2017, 164, A5019–A5025.
Liu, Y. K.; Zhao, C. Z.; Du, J.; Zhang, X. Q.; Chen, A. B.; Zhang, Q. Research progresses of liquid electrolytes in lithium-ion batteries. Small 2023, 19, 2205315.
Liang, Y. L.; Dong, H.; Aurbach, D.; Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 2020, 5, 646–656.
Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.
Massé, R. C.; Uchaker, E.; Cao, G. Z. Beyond Li-ion: Electrode materials for sodium- and magnesium-ion batteries. Sci. China Mater. 2015, 58, 715–766.
Gao, X. W.; Zhou, Y. N.; Han, D. Z.; Zhou, J. Q.; Zhou, D. Z.; Tang, W.; Goodenough, J. B. Thermodynamic understanding of Li-dendrite formation. Joule 2020, 4, 1864–1879.
Aslam, M. K.; Niu, Y. B.; Hussain, T.; Tabassum, H.; Tang, W. W.; Xu, M. W.; Ahuja, R. How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy 2021, 86, 106142.
Shen, Y. L.; Wang, Y. J.; Miao, Y. C.; Yang, M.; Zhao, X. Y.; Shen, X. D. High-energy interlayer-expanded copper sulfide cathode material in non-corrosive electrolyte for rechargeable magnesium batteries. Adv. Mater. 2020, 32, 1905524.
Zhang, Y.; Liu, S. Q.; Ji, Y. J.; Ma, J. M.; Yu, H. J. Emerging nonaqueous aluminum-ion batteries: Challenges, status, and perspectives. Adv. Mater. 2018, 30, 1706310.
Nguyen, D. T.; Eng, A. Y. S.; Horia, R.; Sofer, Z.; Handoko, A. D.; Ng, M. F.; Seh, Z. W. Rechargeable magnesium batteries enabled by conventional electrolytes with multifunctional organic chloride additives. Energy Storage Mater. 2022, 45, 1120–1132.
Bonnick, P.; Muldoon, J. A trip to Oz and a peak behind the curtain of magnesium batteries. Adv. Funct. Mater. 2020, 30, 1910510.
Fang, S.; Bresser, D.; Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 2020, 10, 1902485.
Peng, M. Q.; Shin, K.; Jiang, L. X.; Jin, Y.; Zeng, K.; Zhou, X. L.; Tang, Y. B. Alloy-type anodes for high-performance rechargeable batteries. Angew. Chem., Int. Ed. 2022, 61, 202206770.
Li, S. Q.; Wang, K.; Zhang, G. F.; Li, S. N.; Xu, Y. N.; Zhang, X. D.; Zhang, X.; Zheng, S. H.; Sun, X. Z.; Ma, Y. W. Fast charging anode materials for lithium-ion batteries: Current status and perspectives. Adv. Funct. Mater. 2022, 32, 2200796.
Bin, D. S.; Li, Y. M.; Sun, Y. G.; Duan, S. Y.; Lu, Y. X.; Ma, J. M.; Cao, A. M.; Hu, Y. S.; Wan, L. J. Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv. Energy Mater. 2018, 8, 1800855.
Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695–1715.
Niu, J. Z.; Gao, H.; Ma, W. S.; Luo, F. K.; Yin, K. B.; Peng, Z. Q.; Zhang, Z. H. Dual phase enhanced superior electrochemical performance of nanoporous bismuth-tin alloy anodes for magnesium-ion batteries. Energy Storage Mater. 2018, 14, 351–360.
Liu, G. Y.; Wang, H. Y.; Liu, G. Q.; Yang, Z. Z.; Jin, B.; Jiang, Q. C. Synthesis and electrochemical performance of high-rate dual-phase Li4Ti5O12-TiO2 nanocrystallines for Li-ion batteries. Electrochim. Acta 2013, 87, 218–223.
Jung, H. G.; Myung, S. T.; Yoon, C. S.; Son, S. B.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y. K. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ. Sci. 2011, 4, 1345–1351.
Liu, Y.; Yang, Y. F. Recent progress of TiO2-based anodes for Li ion batteries. J. Nanomater. 2016, 2016, 8123652.
Kim, D. H.; Ahn, Y. S.; Kim, J. Polyol-mediated synthesis of Li4Ti5O12 nanoparticle and its electrochemical properties. Electrochem. Commun. 2005, 7, 1340–1344.
Paul, S.; Rahman, M. A.; Sharif, S. B.; Kim, J. H.; Siddiqui, S. E. T.; Hossain, M. A. M. TiO2 as an anode of high-performance lithium-ion batteries: A comprehensive review towards practical application. Nanomaterials 2022, 12, 2034.
Stenina, I. A.; Kulova, T. L.; Skundin, A. M.; Yaroslavtsev, A. B. High grain boundary density Li4Ti5O12/anatase-TiO2 nanocomposites as anode material for Li-ion batteries. Mater. Res. Bull. 2016, 75, 178–184.
Li, X.; Lai, C.; Xiao, C. W.; Gao, X. P. Enhanced high rate capability of dual-phase Li4Ti5O12-TiO2 induced by pseudocapacitive effect. Electrochim. Acta 2011, 56, 9152–9158.
Liu, Y. Y.; Zhang, M. Q.; Zhang, Y. P.; Liu, Y.; Wang, L.; Li, X. S.; Xue, M.; Li, B.; Tao, X. T. Li4Ti5O12/TiO2 dual-phase anode materials synthesized in supercritical water–methanol system and investigations on its superior electrochemical performance for lithium-ion batteries. J. Supercrit. Fluids 2019, 154, 104596.
Noerochim, L.; Fikry, R.; Nurdiansah, H.; Purwaningsih, H.; Subhan, A.; Triwibowo, J.; Prihandoko, B. Synthesis of dual-phase Li4Ti5O12-TiO2 nanowires as anode for lithium-ion battery. Ionics 2019, 25, 1505–1511.
Liao, J. Y.; Chabot, V.; Gu, M.; Wang, C. M.; Xiao, X. C.; Chen, Z. W. Dual phase Li4Ti5O12-TiO2 nanowire arrays as integrated anodes for high-rate lithium-ion batteries. Nano Energy 2014, 9, 383–391.
He, Y. F.; Chu, D. Y.; Zhuo, Z. S. Cycle stability of dual-phase lithium titanate (LTO)/TiO2 nanowires as lithium battery anode. J. Multidiscip. Appl. Nat. Sci. 2021, 1, 54–61.
Zhang, J.; Zhou, C.; Naenen, V.; Jang, L. W.; Locquet, J. P.; Seo, J. W. Facile synthesis of dual-phase lithium titanate nanowires as anode materials for lithium-ion battery. J. Alloys Compd. 2021, 875, 160038.
Noerochim, L.; Caesarendra, W.; Habib, A.; Widyastuti; Suwarno; Ni’mah, Y. L.; Subhan, A.; Prihandoko, B.; Kosasih, B. Role of TiO2 phase composition tuned by LiOH on the electrochemical performance of dual-phase Li4Ti5O12-TiO2 microrod as an anode for lithium-ion battery. Energies 2020, 13, 5251.
Wu, L. B.; Leng, X. N.; Liu, Y.; Wei, S. F.; Li, C. L.; Wang, G. Y.; Lian, J. S.; Jiang, Q.; Nie, A. M.; Zhang, T. Y. A strategy for synthesis of nanosheets consisting of alternating spinel Li4Ti5O12 and rutile TiO2 lamellas for high-rate anodes of lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 4649–4657.
Xu, H.; Chen, J.; Li, Y. H.; Guo, X. L.; Shen, Y. F.; Wang, D.; Zhang, Y.; Wang, Z. M. Fabrication of Li4Ti5O12-TiO2 nanosheets with structural defects as high-rate and long-life anodes for lithium-ion batteries. Sci. Rep. 2017, 7, 2960.
Yang, L. Y.; Li, H. Z.; Liu, J.; Lu, Y. K.; Li, S. T.; Min, J.; Yan, N.; Men, Z.; Lei, M. Effects of TiO2 phase on the performance of Li4Ti5O12 anode for lithium-ion batteries. J. Alloys Compd. 2016, 689, 812–819.
Wang, S. T.; Yang, Y.; Quan, W.; Hong, Y.; Zhang, Z. T.; Tang, Z. L.; Li, J. Ti3+-free three-phase Li4Ti5O12/TiO2 for high-rate lithium ion batteries: Capacity and conductivity enhancement by phase boundaries. Nano Energy 2017, 32, 294–301.
Jiang, Y. M.; Wang, K. X.; Wu, X. Y.; Zhang, H. J.; Bartlett, B. M.; Chen, J. S. Li4Ti5O12/TiO2 hollow spheres composed nanoflakes with preferentially exposed Li4Ti5O12 (011) facets for high-rate lithium ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 19791–19796.
Wang, Q.; Geng, J.; Yuan, C.; Kuai, L.; Geng, B. Y. Mesoporous spherical Li4Ti5O12/TiO2 composites as an excellent anode material for lithium-ion batteries. Electrochim. Acta 2016, 212, 41–46.
Zhang, Y.; Zhang, Y.; Huang, L.; Zhou, Z. F.; Wang, J. F.; Liu, H.; Wu, H. Hierarchical carambola-like Li4Ti5O12-TiO2 composites as advanced anode materials for lithium-ion batteries. Electrochim. Acta 2016, 195, 124–133.
Liao, J. Y.; Xiao, X. C.; Higgins, D.; Lee, D.; Hassan, F.; Chen, Z. W. Hierarchical Li4Ti5O12-TiO2 composite microsphere consisting of nanocrystals for high power Li-ion batteries. Electrochim. Acta 2013, 108, 104–111.
Gao, L.; Liu, R. J.; Hu, H.; Li, G. J.; Yu, Y. Carbon-decorated Li4Ti5O12/rutile TiO2 mesoporous microspheres with nanostructures as high-performance anode materials in lithium-ion batteries. Nanotechnology 2014, 25, 175402.
Dan, L.; Yanjun, C.; Kangrong, L. Electrospun dual phase Li4Ti5O12-TiO2/C nanocomposites as anodes for high-rate lithium-ion batteries. Integr. Ferroelectr. 2016, 175, 146–154.
Wang, L. P.; Zhang, H. Q.; Deng, Q. J.; Huang, Z. L.; Zhou, A. J.; Li, J. Z. Superior rate performance of Li4Ti5O12/TiO2/C/CNTs composites via microemulsion-assisted method as anodes for lithium ion battery. Electrochim. Acta 2014, 142, 202–207.
Rahman, M. M.; Wang, J. Z.; Hassan, M. F.; Wexler, D.; Liu, H. K. Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: A nanocomposite anode material for Li-ion batteries. Adv. Energy Mater. 2011, 1, 212–220.
Chen, C. C.; Huang, Y. N.; An, C. H.; Zhang, H.; Wang, Y. J.; Jiao, L. F.; Yuan, H. T. Copper-doped dual phase Li4Ti5O12-TiO2 nanosheets as high-rate and long cycle life anodes for high-power lithium-ion batteries. ChemSusChem 2015, 8, 114–122.
Li, Y. M.; Wang, Z. G.; Zhao, D.; Zhang, L. Gd doped single-crystalline Li4Ti5O12/TiO2 nanosheets composites as superior anode material in lithium ion batteries. Electrochim. Acta 2015, 182, 368–375.
Pu, Z. Y.; Lan, Q. Y.; Li, Y. M.; Liu, S. M.; Yu, D. L.; Lv, X. J. Preparation of W-doped hierarchical porous Li4Ti5O12/brookite nanocomposites for high rate lithium ion batteries at −20 °C. J. Power Sources 2019, 437, 226890.
Meng, Q. H.; Chen, F.; Hao, Q. F.; Li, N.; Sun, X. D. Nb-doped Li4Ti5O12-TiO2 hierarchical microspheres as anode materials for high-performance Li-ion batteries at low temperature. J. Alloys Compd. 2021, 885, 160842.
Wu, Q. L.; Xu, J. G.; Yang, X. F.; Lu, F. Q.; He, S. M.; Yang, J. L.; Fan, H. J.; Wu, M. M. Ultrathin anatase TiO2 nanosheets embedded with TiO2-B nanodomains for lithium-ion storage: Capacity enhancement by phase boundaries. Adv. Energy Mater. 2015, 5, 1401756.
Zheng, J.; Xia, R.; Yaqoob, N.; Kaghazchi, P.; Ten Elshof, J. E.; Huijben, M. Simultaneous enhancement of lithium transfer kinetics and structural stability in dual-phase TiO2 electrodes by ruthenium doping. ACS Appl. Mater. Interfaces 2024, 16, 8616–8626.
Song, W. X.; Jiang, Q. F.; Xie, X. Y.; Brookfield, A.; McInnes, E. J. L.; Shearing, P. R.; Brett, D. J. L.; Xie, F.; Riley, D. J. Synergistic storage of lithium ions in defective anatase/rutile TiO2 for high-rate batteries. Energy Storage Mater. 2019, 22, 441–449.
Wang, Y.; Zhou, A. J.; Dai, X. Y.; Feng, L. D.; Li, J. W.; Li, J. Z. Solid-state synthesis of submicron-sized Li4Ti5O12/Li2TiO3 composites with rich grain boundaries for lithium ion batteries. J. Power Sources 2014, 266, 114–120.
Li, H.; Li, Z. F.; Cui, Y. H.; Ma, C. X.; Tang, Z. Y. Long-cycled Li2ZnTi3O8/TiO2 composite anode material synthesized via a one-pot co-precipitation method for lithium ion batteries. New J. Chem. 2017, 41, 975–981.
Li, Z. L.; Zhao, H. L.; Lv, P. P.; Zhang, Z. J.; Zhang, Y.; Du, Z. H.; Teng, Y. Q.; Zhao, L. N.; Zhu, Z. M. Watermelon-like structured SiO x -TiO2@C nanocomposite as a high-performance lithium-ion battery anode. Adv. Funct. Mater. 2018, 28, 1605711.
McNulty, D.; Geaney, H.; Ramasse, Q.; O'Dwyer, C. Long cycle life, highly ordered SnO2/GeO2 nanocomposite inverse opal anode materials for Li-ion batteries. Adv. Funct. Mater. 2020, 30, 2005073.
Shan, J. Q.; Liu, Y. X.; Liu, P.; Huang, Y. S.; Su, Y. Z.; Wu, D. Q.; Feng, X. L. Nitrogen-doped carbon-encapsulated SnO2-SnS/graphene sheets with improved anodic performance in lithium ion batteries. J. Mater. Chem. A 2015, 3, 24148–24154.
Yoon, S.; Lee, S. Y.; Nguyen, T. L.; Kim, I. T.; Woo, S. G.; Cho, K. Y. Controlled synthesis of dual-phase carbon-coated Nb2O5/TiNb2O7 porous spheres and their Li-ion storage properties. J. Alloys Compd. 2018, 731, 437–443.
Nguyen, T. X.; Patra, J.; Tsai, C. C.; Xuan, W. Y.; Chen, H. Y. T.; Dyer, M. S.; Clemens, O.; Li, J.; Majumder, S. B.; Chang, J. K. et al. Secondary-phase-induced charge-discharge performance enhancement of Co-free high entropy spinel oxide electrodes for Li-ion batteries. Adv. Funct. Mater. 2023, 33, 2300509.
Yang, H. M.; He, L. X.; Chen, Q. C.; Zhu, J. C.; Jiang, G. Q.; Qiu, N.; Wang, Y. Phase-selective defects engineering in dual-phase high entropy oxide for Li-ion storage. Chem. Eng. J. 2024, 488, 151113.
Li, T.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Cycleable graphite/FeSi6 alloy composite as a high capacity anode material for Li-ion batteries. J. Power Sources 2008, 184, 473–476.
Kumar, P.; Berhaut, C. L.; Zapata Dominguez, D.; De Vito, E.; Tardif, S.; Pouget, S.; Lyonnard, S.; Jouneau, P. H. Nano-architectured composite anode enabling long-term cycling stability for high-capacity lithium-ion batteries. Small 2020, 16, 1906812.
Niu, J. Z.; Zhang, Z. H.; Aurbach, D. Alloy anode materials for rechargeable Mg ion batteries. Adv. Energy Mater. 2020, 10, 2000697.
Song, M. J.; Niu, J. Z.; Yin, K. B.; Gao, H.; Zhang, C.; Ma, W. S.; Luo, F. K.; Peng, Z. Q.; Zhang, Z. H. Self-supporting, eutectic-like, nanoporous biphase bismuth-tin film for high-performance magnesium storage. Nano Res. 2019, 12, 801–808.
Liu, J. J.; Cheng, M.; Liu, Q. Q.; Wang, R. R.; Wei, Y. H.; Ma, W. J.; Hu, J.; Wei, T.; Ling, Y.; Liu, B. et al. Bimetallic Bi-Sn micro-/nanospheres@cellulose nanocrystal derived carbon aerogel composite anode for high-performance Mg-ion batteries. Compos. Commun. 2023, 39, 101553.
Song, M. J.; Niu, J. Z.; Gao, H.; Kou, T. Y.; Wang, Z. K.; Zhang, Z. H. Phase engineering in lead-bismuth system for advanced magnesium ion batteries. J. Mater. Chem. A 2020, 8, 13572–13584.
273
Views
59
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).