AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (15.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Cascade degradation and electrocatalytic upcycling of waste poly(ethylene terephthalate) to valued products

Xin Li1,§Zirui Jiang1,§Zongkui Kou2John Wang3Shiyou Zheng1 ( )
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore

§ Xin Li and Zirui Jiang contributed equally to this work.

Show Author Information

Graphical Abstract

This review provides an overview of the advancements for the “degradation-electrocatalytic upcycling (De-eUp)” of poly(ethylene terephthalate) (PET) waste. This strategy involves electro-reforming PET-hydrolyzed intermediates or using PET pyrolyzed products as electrocatalysts to generate high-value products.

Abstract

The global annual production of poly(ethylene terephthalate) (PET) has reached 82 million tons, yet only a small fraction (less than 20%) is recycled. The ultra-slow degradation rate of PET results in the accumulation of PET waste in the environment, causing serious plastic pollution and posing severe challenges to ecosystems. In response, great efforts have been directed toward developing a cascade degradation and electrocatalytic upcycling strategy, which serves as a “waste-to-wealth” pathway. This strategy involves electro-reforming PET-hydrolyzed intermediates or using PET pyrolyzed products as electrocatalysts to generate high-value products. This review provides an overview of the state-of-the-art strategies for the “degradation-electrocatalytic upcycling (De-eUp)” of PET waste. Initially, an introduction to the strategy is provided, categorizing it into two main frameworks: “pyrolysis-electrocatalytic upcycling” and “hydrolysis-electrocatalytic upcycling”. The section on “pyrolysis-electrocatalytic upcycling” delves into the degradation methods for designing derived carbon nanomaterials and their utilization as high-performance electrocatalysts. The “hydrolysis-electrocatalytic upcycling” section discusses recent advancements in electro-reforming of PET hydrolyzed intermediates for the production of C1 and C2 products. The review concludes by examining the challenges and future prospects in developing an efficient and economical PET upcycling strategy. It is anticipated that this review will stimulate further progress in plastic waste valorization.

References

[1]

Borrelle, S. B.; Ringma, J.; Law, K. L.; Monnahan, C. C.; Lebreton, L.; Mcgivern, A.; Murphy, E.; Jambeck, J.; Leonard, G. H.; Hilleary, M. A. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 2020, 369, 1515–1518.

[2]

Martín, A. J.; Mondelli, C.; Jaydev, S. D.; Pérez-Ramírez, J. Catalytic processing of plastic waste on the rise. Chem 2021, 7, 1487–1533.

[3]

Vidal, F.; van der Marel, E. R.; Kerr, R. W. F.; Mcelroy, C.; Schroeder, N.; Mitchell, C.; Rosetto, G.; Chen, T. T. D.; Bailey, R. M.; Hepburn, C. et al. Designing a circular carbon and plastics economy for a sustainable future. Nature 2024, 626, 45–57.

[4]

Taniguchi, I.; Yoshida, S.; Hiraga, K.; Miyamoto, K.; Kimura, Y.; Oda, K. Biodegradation of PET: Current status and application aspects. ACS Catal. 2019, 9, 4089–4105.

[5]

Lange, J. P. Managing plastic waste-sorting, recycling, disposal, and product redesign. ACS Sustanin. Chem. Eng. 2021, 9, 15722–15738.

[6]

Kang, S. L.; Sun, T.; Ma, Y. X.; Du, M. M.; Gong, M. F.; Zhou, C. Y.; Chai, Y.; Qiu, B. C. Artificial photosynthesis bringing new vigor into plastic wastes. SmartMat 2023, 4, e1202.

[7]

Ashraf, M.; Ullah, N.; Khan, I.; Tremel, W.; Ahmad, S.; Tahir, M. N. Photoreforming of waste polymers for sustainable hydrogen fuel and chemicals feedstock: Waste to energy. Chem. Rev. 2023, 123, 4443–4509.

[8]

Diao, J. J.; Hu, Y. F.; Tian, Y. X.; Carr, R.; Moon, T. S. Upcycling of poly(ethylene terephthalate) to produce high-value bio-products. Cell Rep. 2023, 42, 111908.

[9]

Behera, S.; Dinda, S.; Saha, R.; Mondal, B. Quantitative electrocatalytic upcycling of polyethylene terephthalate plastic and its oligomer with a cobalt-based one-dimensional coordination polymer having open metal sites along with coproduction of hydrogen. ACS Catal. 2023, 13, 469–474.

[10]

Singh, A. K.; Bedi, R.; Kaith, B. S. Composite materials based on recycled polyethylene terephthalate and their properties-A comprehensive review. Compos. Part B: Eng. 2021, 219, 108928.

[11]

Cho, J.; Kim, B.; Kwon, T.; Lee, K.; Choi, S. I. Electrocatalytic upcycling of plastic waste. Green Chem. 2023, 25, 8444–8458.

[12]

Su, H. C.; Hu, Y. J.; Feng, H. Y.; Zhu, L. J.; Wang, S. R. Efficient H2 production from PET plastic wastes over mesoporous carbon-supported Ru-ZnO catalysts in a mild pure-water system. ACS Sustain. Chem. Eng. 2023, 11, 578–586.

[13]

Zhao, X. H.; Korey, M.; Li, K.; Copenhaver, K.; Tekinalp, H.; Celik, S.; Kalaitzidou, K.; Ruan, R.; Ragauskas, A. J.; Ozcan, S. Plastic waste upcycling toward a circular economy. Chem. Eng. J. 2022, 428, 131928.

[14]

Jiao, X. C.; Zheng, K.; Hu, Z. X.; Zhu, S.; Sun, Y. F.; Xie, Y. Conversion of waste plastics into value-added carbonaceous fuels under mild conditions. Adv. Mater. 2021, 33, 2005192.

[15]

Su, J.; Li, T.; Xie, W.; Wang, C.; Yin, L. J.; Yan, T. R.; Wang, K. G. Emerging technologies for waste plastic treatment. ACS Sustain. Chem. Eng. 2023, 11, 8176–8192.

[16]

Du, M. M.; Xing, M. Y.; Kang, S. L.; Ma, Y. X.; Qiu, B. C.; Chai, Y. Building a bridge from solid wastes to solar fuels and chemicals via artificial photosynthesis. EcoMat 2022, 4, e12259.

[17]

Vollmer, I.; Jenks, M. J. F.; Roelands, M. C. P.; White, R. J.; van Harmelen, T.; de Wild, P.; van der Laan, G. P.; Meirer, F.; Keurentjes, J. T. F.; Weckhuysen, B. M. Beyond mechanical recycling: Giving new life to plastic waste. Angew. Chem., Int. Ed. 2020, 59, 15402–15423.

[18]

Liu, K. S.; Wang, Y. X.; Liu, F. L.; Liu, C. X.; Shi, R.; Chen, Y. Selective electrocatalytic reforming of PET-derived ethylene glycol to formate with a Faraday efficiency of 93.2% at industrial-level current densities. Chem. Eng. J. 2023, 473, 145292.

[19]

Yan, Y. F.; Zhou, H.; Xu, S. M.; Yang, J. R.; Hao, P. J.; Cai, X.; Ren, Y.; Xu, M.; Kong, X. G.; Shao, M. F. et al. Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities. J. Am. Chem. Soc. 2023, 145, 6144–6155.

[20]

Karimi Estahbanati, M. R.; Kong, X. Y.; Eslami, A.; Soo, H. S. Current developments in the chemical upcycling of waste plastics using alternative energy sources. ChemSusChem 2021, 14, 4152–4166.

[21]

Singh, A.; Rorrer, N. A.; Nicholson, S. R.; Erickson, E.; Desveaux, J. S.; Avelino, A. F. T.; Lamers, P.; Bhatt, A.; Zhang, Y. M.; Avery, G. et al. Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). Joule 2021, 5, 2479–2503.

[22]

Li, X.; Wang, J. Y.; Zhang, T.; Yang, S.; Sun, M. Z.; Qian, X. F.; Wang, T. F.; Zhao, Y. X. Sustainable catalytic strategies for the transformation of plastic wastes into valued products. Chem. Eng. Sci. 2023, 276, 118729.

[23]

Zheng, K.; Wu, Y.; Hu, Z. X.; Wang, S. M.; Jiao, X. C.; Zhu, J. C.; Sun, Y. F.; Xie, Y. Progress and perspective for conversion of plastic wastes into valuable chemicals. Chem. Soc. Rev. 2023, 52, 8–29.

[24]

Hou, P. X.; Zhang, F.; Zhang, L. L.; Liu, C.; Cheng, H. M. Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications. Adv. Funct. Mater. 2022, 32, 2108541.

[25]

Tang, L.; Tan, J. Y.; Nong, H. Y.; Liu, B. L.; Cheng, H. M. Chemical vapor deposition growth of two-dimensional compound materials: Controllability, material quality, and growth mechanism. Acc. Mater. Res. 2021, 2, 36–47.

[26]

Zhang, J.; Wang, F.; Shenoy, V. B.; Tang, M.; Lou, J. Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Mater. Today 2020, 40, 132–139.

[27]

Veksha, A.; Yin, K.; Moo, J. G. S.; Oh, W. D.; Ahamed, A.; Chen, W. Q.; Weerachanchai, P.; Giannis, A.; Lisak, G. Processing of flexible plastic packaging waste into pyrolysis oil and multi-walled carbon nanotubes for electrocatalytic oxygen reduction. J. Hazardous Mater. 2020, 387, 121256.

[28]

Chen, W. Q.; Fu, X. X.; Chan, W. P.; Veksha, A.; Lisak, G. Carbon nanosheet-carbon nanocage encapsulated Cu composite from chemical vapor deposition of real-world plastic waste for tailored CO2 conversion to various products. Appl. Mater. Today 2021, 25, 101207.

[29]

Sangeetha, D. N.; Santosh, M. S.; Selvakumar, M. Flower-like carbon doped MoS2/activated carbon composite electrode for superior performance of supercapacitors and hydrogen evolution reactions. J. Alloys Compd. 2020, 831, 154745.

[30]

Veeramani, K.; Janani, G.; Kim, J.; Surendran, S.; Lim, J.; Jesudass, S. C.; Mahadik, S.; Lee, H.; Kim, T. H.; Kim, J. K. et al. Hydrogen and value-added products yield from hybrid water electrolysis: A critical review on recent developments. Renew. Sustain. Energy Rev. 2023, 177, 113227.

[31]

Wang, Y.; Liu, J. L.; Yuan, H. J.; Liu, F.; Hu, T. J.; Yang, B. Q. Strong electronic interaction between amorphous MnO2 nanosheets and ultrafine Pd nanoparticles toward enhanced oxygen reduction and ethylene glycol oxidation reactions. Adv. Funct. Mater. 2023, 33, 2211909.

[32]

Li, J. S.; Li, L. M.; Ma, X. Y.; Han, X.; Xing, C. C.; Qi, X. Q.; He, R.; Arbiol, J.; Pan, H. Y.; Zhao, J. et al. Selective ethylene glycol oxidation to formate on nickel selenide with simultaneous evolution of hydrogen. Adv. Sci. 2023, 10, 2300841.

[33]

Yan, H.; Yao, S.; Wang, J. Y.; Zhao, S. M.; Sun, Y. H.; Liu, M. Y.; Zhou, X.; Zhang, G. Y.; Jin, X.; Feng, X. et al. Engineering Pt-Mn2O3 interface to boost selective oxidation of ethylene glycol to glycolic acid. Appl. Catal. B: Environ. 2021, 284, 119803.

[34]

Wang, J. Y.; Li, X.; Zhang, T.; Qian, X. F.; Wang, T. F.; Zhao, Y. X. Rational design of photo-/electro-catalytic systems for the transformation of plastic wastes. Appl. Catal. B: Environ. 2023, 332, 122744.

[35]

Wang, H. J.; Zhan, W. J.; Yu, H. J.; Jiang, S. J.; Wang, B. B.; Deng, K.; Wang, Z. Q.; Xu, Y.; Wang, L. Nitrogen-doped Ni3P-NiMoO4 heterostructure arrays for coupling hydrogen production with polyethylene terephthalate plastic electro-recycling. Mater. Today Phys. 2023, 37, 101192.

[36]

Moges, E. A.; Chang, C. Y.; Tsai, M. C.; Su, W. N.; Hwang, B. J. Electrocatalysts for value-added electrolysis coupled with hydrogen evolution. EES Catal. 2023, 1, 413–433.

[37]

Du, J. L.; Xiang, D. L.; Zhou, K. X.; Wang, L. C.; Yu, J. Y.; Xia, H. H.; Zhao, L. L.; Liu, H.; Zhou, W. J. Electrochemical hydrogen production coupled with oxygen evolution, organic synthesis, and waste reforming. Nano Energy 2022, 104, 107875.

[38]

Zhou, H.; Wang, Y.; Ren, Y.; Li, Z. H.; Kong, X. G.; Shao, M. F.; Duan, H. H. Plastic waste valorization by leveraging multidisciplinary catalytic technologies. ACS Catal. 2022, 12, 9307–9324.

[39]

Roy, P. S.; Garnier, G.; Allais, F.; Saito, K. Strategic approach towards plastic waste valorization: Challenges and promising chemical upcycling possibilities. ChemSusChem 2021, 14, 4007–4027.

[40]

Chen, X.; Wang, Y. D.; Zhang, L. Recent progress in the chemical upcycling of plastic wastes. ChemSusChem 2021, 14, 4137–4151.

[41]

Ge, R. X.; Li, J.; Duan, H. H. Recent advances in non-noble electrocatalysts for oxidative valorization of biomass derivatives. Sci. China Mater. 2022, 65, 3273–3301.

[42]

Li, Y. H.; Ozden, A.; Leow, W. R.; Ou, P. F.; Huang, J. E.; Wang, Y. H.; Bertens, K.; Xu, Y.; Liu, Y.; Roy, C. et al. Redox-mediated electrosynthesis of ethylene oxide from CO2 and water. Nat. Catal. 2022, 5, 185–192.

[43]

Papanikolaou, G.; Centi, G.; Perathoner, S.; Lanzafame, P. Catalysis for e-chemistry: Need and gaps for a future De-fossilized chemical production, with focus on the role of complex (direct) syntheses by electrocatalysis. ACS Catal. 2022, 12, 2861–2876.

[44]

Kim, S.; Kong, D.; Zheng, X. L.; Park, J. H. Upcycling plastic wastes into value-added products via electrocatalysis and photoelectrocatalysis. J. Energy Chem. 2024, 91, 522–541.

[45]

Lou, X. X.; Liu, F. Y.; Li, Q. Y.; Chu, M. Y.; Wang, G. L.; Chen, J. X.; Cao, M. H. Advances in solar-driven, electro/photoelectrochemical, and microwave-assisted upcycling of waste polyesters. Chem. Commun. 2024, 60, 2828–2838.

[46]

Li, J. N.; Ma, H. P.; Zhao, G. P.; Huang, G. F.; Sun, W. B.; Peng, C. Plastic waste conversion by leveraging renewable photo/electro-catalytic technologies. ChemSusChem 2024, 17, e202301352.

[47]

Sajwan, D.; Sharma, A.; Sharma, M.; Krishnan, V. Upcycling of plastic waste using photo-, electro-, and photoelectrocatalytic approaches: A way toward circular economy. ACS Catal. 2024, 14, 4865–4926.

[48]

Barnard, E.; Rubio Arias, J. J.; Thielemans, W. Chemolytic depolymerisation of PET: A review. Green Chem. 2021, 23, 3765–3789.

[49]

Lu, H. Y.; Diaz, D. J.; Czarnecki, N. J.; Zhu, C. Z.; Kim, W.; Shroff, R.; Acosta, D. J.; Alexander, B. R.; Cole, H. O.; Zhang, Y. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 2022, 604, 662–667.

[50]

Dhaka, V.; Singh, S.; Anil, A. G.; Sunil Kumar Naik, T. S.; Garg, S.; Samuel, J.; Kumar, M.; Ramamurthy, P. C.; Singh, J. Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. Environ. Chem. Lett. 2022, 20, 1777–1800.

[51]

Wei, R.; Breite, D.; Song, C.; Gräsing, D.; Ploss, T.; Hille, P.; Schwerdtfeger, R.; Matysik, J.; Schulze, A.; Zimmermann, W. Biocatalytic degradation efficiency of postconsumer polyethylene terephthalate packaging determined by their polymer microstructures. Adv. Sci. 2019, 6, 1900491.

[52]

Huang, J. B.; Meng, H. X.; Luo, X. S.; Mu, X.; Xu, W. W.; Jin, L.; Lai, B. S. Insights into the thermal degradation mechanisms of polyethylene terephthalate dimer using DFT method. Chemosphere 2022, 291, 133112.

[53]

Zhou, N.; Dai, L. L.; Lv, Y. C.; Li, H.; Deng, W. Y.; Guo, F. Q.; Chen, P.; Lei, H. W.; Ruan, R. Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chem. Eng. J. 2021, 418, 129412.

[54]

Çepelioğullar, Ö.; Pütün, A. E. A pyrolysis study for the thermal and kinetic characteristics of an agricultural waste with two different plastic wastes. Waste Manag. Res. 2014, 32, 971–979.

[55]

Jiang, M. K.; Wang, X. L.; Xi, W. L.; Zhou, H. X.; Yang, P.; Yao, J. L.; Jiang, X. L.; Wu, D. Upcycling plastic waste to carbon materials for electrochemical energy storage and conversion. Chem. Eng. J. 2023, 461, 141962.

[56]

Choi, J.; Yang, I.; Kim, S. S.; Cho, S. Y.; Lee, S. Upcycling plastic waste into high value-added carbonaceous materials. Macromol. Rapid Commun. 2022, 43, 2100467.

[57]

Fitzer, E.; Kochling, K. H.; Boehm, H. P.; Marsh, H. Recommended terminology for the description of carbon as a solid (IUPAC Recommendations 1995). Pure Appl. Chem. 1995, 67, 473–506.

[58]

Dai, L. L.; Karakas, O.; Cheng, Y. L.; Cobb, K.; Chen, P.; Ruan, R. A review on carbon materials production from plastic wastes. Chem. Eng. J. 2023, 453, 139725.

[59]

Zhao, X.; Boruah, B.; Chin, K. F.; Đokić, M.; Modak, J. M.; Soo, H. S. Upcycling to sustainably reuse plastics. Adv. Mater. 2022, 34, 2100843.

[60]

Wang, C. L.; Han, H. G.; Wu, Y. F.; Astruc, D. Nanocatalyzed upcycling of the plastic wastes for a circular economy. Coord. Chem. Rev. 2022, 458, 214422.

[61]

Yue, S.; Wang, P. F.; Yu, B. N.; Zhang, T.; Zhao, Z. Y.; Li, Y.; Zhan, S. H. From plastic waste to treasure: Selective upcycling through catalytic technologies. Adv. Energy Mater. 2023, 13, 2302008.

[62]

Kong, D. B.; Lv, W.; Liu, R. L.; He, Y. B.; Wu, D. C.; Li, F.; Fu, R. W.; Yang, Q. H.; Kang, F. Y. Superstructured carbon materials: Design and energy applications. Energy Mater. Devices 2023, 1, 9370017.

[63]

Li, Y.; Wang, H. H.; Priest, C.; Li, S. W.; Xu, P.; Wu, G. Electrocatalysis: Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 2021, 33, 2170042.

[64]

Yan, C. C.; Jiang, X.; Yu, J. X.; Ding, Z. L.; Ma, L.; Su, T. Y.; Wang, Y. L.; Wang, C. X.; Huang, G. Y.; Xu, S. M. Waste to wealth: Direct utilization of spent materials for electrocatalysis and energy storage. Green Chem. 2023, 25, 3816–3846.

[65]

Chen, C. C.; Han, X.; Li, X.; Jiang, P. C.; Niu, D.; Ma, L. X.; Liu, W. D.; Li, S. Y.; Qu, Y. Y.; Hu, H. B. et al. General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis. Nat. Catal. 2021, 4, 425–430.

[66]

Stanica-Ezeanu, D.; Matei, D. Natural depolymerization of waste poly(ethylene terephthalate) by neutral hydrolysis in marine water. Sci. Rep. 2021, 11, 4431.

[67]

Saeed, B.; Khan, P.; Laeeq Khan, A.; Almohamadi, H.; Naeem, A.; Aslam, M.; Zaman, M.; Niazi, M. B. K.; Amjad Gilani, M.; Yasin, M. Experimental and theoretical insights into bioethanol recovery: Valorizing waste PET bottles for sustainable pervaporation membranes. Sep. Purif. Technol. 2025, 357, 130104.

[68]

Dyosiba, X.; Ren, J. W.; Musyoka, N. M.; Langmi, H. W.; Mathe, M.; Onyango, M. S. Feasibility of varied polyethylene terephthalate wastes as a linker source in metal-organic framework UiO-66(Zr) synthesis. Ind. Eng. Chem. Res. 2019, 58, 17010–17016.

[69]

Singh, S.; Sharma, S.; Umar, A.; Jha, M.; Mehta, S. K.; Kansal, S. K. Nanocuboidal-shaped zirconium based metal organic framework for the enhanced adsorptive removal of nonsteroidal anti-inflammatory drug, ketorolac tromethamine, from aqueous phase. New J. Chem. 2018, 42, 1921–1930.

[70]

Gangaraju, D.; Shanmugharaj, A. M.; Sridhar, V.; Park, H. Fabrication of nanometer-sized nickel-based metal organic frameworks on carbon nanotubes for electro-catalytic oxidation of urea and arsenic removal. ACS Appl. Nano Mater. 2022, 5, 19035–19042.

[71]

Mellmann, D.; Sponholz, P.; Junge, H.; Beller, M. Formic acid as a hydrogen storage material-development of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev. 2016, 45, 3954–3988.

[72]

Li, L.; Ozden, A.; Guo, S. Y.; de Arquer, F. P. G.; Wang, C. H.; Zhang, M. Z.; Zhang, J.; Jiang, H. Y.; Wang, W.; Dong, H. et al. Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat. Commun. 2021, 12, 5223.

[73]

Si, D.; Xiong, B. Y.; Chen, L. S.; Shi, J. L. Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution. Chem. Catal. 2021, 1, 941–955.

[74]

Qi, J.; An, Z. Y.; Li, C.; Chen, X.; Li, W. Z.; Liang, C. H. Electrocatalytic selective oxidation of ethylene glycol: A concise review of catalyst development and reaction mechanism with comparison to thermocatalytic oxidation process. Curr. Opin. Electroche. 2022, 32, 100929.

[75]

Chauhan, N. L.; Dameera, V.; Chowdhury, A.; Juvekar, V. A.; Sarkar, A. Electrochemical oxidation of ethylene glycol in a channel flow reactor. Catal. Today 2018, 309, 126–132.

[76]

Juan, C.; Lan, B.; Zhao, C. C.; Zhang, H. L.; Li, D.; Zhang, F. From waste plastics to layered porous nitrogen-doped carbon materials with excellent HER performance. Chem. Commun. 2023, 59, 6187–6190.

[77]

Muhyuddin, M.; Mustarelli, P.; Santoro, C. Recent advances in waste plastic transformation into valuable platinum-group metal-free electrocatalysts for oxygen reduction reaction. ChemSusChem 2021, 14, 3785–3800.

[78]

Liu, X. G.; Ma, C. D.; Wen, Y. L.; Chen, X. C.; Zhao, X.; Tang, T.; Holze, R.; Mijowska, E. Highly efficient conversion of waste plastic into thin carbon nanosheets for superior capacitive energy storage. Carbon 2021, 171, 819–828.

[79]

Min, J. K.; Wen, X.; Tang, T.; Chen, X. C.; Huo, K. F.; Gong, J.; Azadmanjiri, J.; He, C. B.; Mijowska, E. A general approach towards carbonization of plastic waste into a well-designed 3D porous carbon framework for super lithium-ion batteries. Chem. Commun. 2020, 56, 9142–9145.

[80]

Li, C. P.; Tong, L. J.; Wang, S. L.; Liu, Q.; Wang, Y. X.; Li, X.; Wang, M. X.; Li, M. X.; Chen, X. C.; Wu, J. X. et al. Nitrogen doping induced by intrinsic defects of recycled polyethylene terephthalate-derived carbon nanotubes. SusMat 2023, 3, 431–440.

[81]

Moo, J. G. S.; Veksha, A.; Oh, W. D.; Giannis, A.; Udayanga, W. D. C.; Lin, S. X.; Ge, L. Y.; Lisak, G. Plastic derived carbon nanotubes for electrocatalytic oxygen reduction reaction: Effects of plastic feedstock and synthesis temperature. Electrochem. Commun. 2019, 101, 11–18.

[82]

Zhang, Y.; Zhang, L. Y.; Zhou, C. W. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013, 46, 2329–2339.

[83]

Wang, Q. C.; Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Zeng, J.; Song, Y. H.; Duan, X. D.; Wang, D. S.; Li, Y. D. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ. Sci. 2020, 13, 1593–1616.

[84]

Luong, D. X.; Bets, K. V.; Algozeeb, W. A.; Stanford, M. G.; Kittrell, C.; Chen, W. Y.; Salvatierra, R. V.; Ren, M. Q.; Mchugh, E. A.; Advincula, P. A. et al. Gram-scale bottom-up flash graphene synthesis. Nature 2020, 577, 647–651.

[85]

Algozeeb, W. A.; Savas, P. E.; Luong, D. X.; Chen, W. Y.; Kittrell, C.; Bhat, M.; Shahsavari, R.; Tour, J. M. Flash graphene from plastic waste. ACS Nano 2020, 14, 15595–15604.

[86]

Chia, X.; Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909–921.

[87]

Wu, X. Z.; Xiao, S. T.; Long, Y. P.; Ma, T.; Shao, W. J.; Cao, S. J.; Xiang, X.; Ma, L.; Qiu, L.; Cheng, C. et al. Emerging 2D materials for electrocatalytic applications: Synthesis, multifaceted nanostructures, and catalytic center design. Small 2022, 18, 2105831.

[88]

Jorge, A. B.; Jervis, R.; Periasamy, A. P.; Qiao, M.; Feng, J. Y.; Tran, L. N.; Titirici, M. M. 3D carbon materials for efficient oxygen and hydrogen electrocatalysis. Adv. Energy Mater. 2020, 10, 1902494.

[89]

Zhou, H.; Ren, Y.; Li, Z. H.; Xu, M.; Wang, Y.; Ge, R. X.; Kong, X. G.; Zheng, L. R.; Duan, H. H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 2021, 12, 4679.

[90]

Wang, N.; Li, X. F.; Hu, M. K.; Wei, W. B.; Zhou, S. H.; Wu, X. T.; Zhu, Q. L. Ordered macroporous superstructure of bifunctional cobalt phosphide with heteroatomic modification for paired hydrogen production and polyethylene terephthalate plastic recycling. Appl. Catal. B: Environ. 2022, 316, 121667.

[91]

Li, Z. J.; Yang, Z. H.; Wang, S.; Luo, H. X.; Xue, Z. M.; Liu, Z. H.; Mu, T. C. Medium entropy metal oxide induced *OH species targeted transfer strategy for efficient polyethylene terephthalate plastic recycling. Chem. Eng. J. 2024, 479, 147611.

[92]

Li, Y.; Lee, L. Q.; Yu, Z. G.; Zhao, H.; Zhang, Y. W.; Gao, P. Q.; Li, H. Coupling of PET waste electroreforming with green hydrogen generation using bifunctional catalyst. Sustain. Energy Fuels 2022, 6, 4916–4924.

[93]

Chang, J. L.; Wang, L. L.; Wu, D. P.; Xu, F.; Jiang, K.; Guo, Y. M.; Gao, Z. Y. Concurrent electrocatalytic hydrogen evolution and polyethylene terephthalate plastics reforming by self-supported amorphous cobalt iron phosphide electrode. J. Colloid Interface Sci. 2024, 655, 555–564.

[94]

Zhang, X. Y.; Wei, R. R.; Yan, M.; Wang, X. L.; Wei, X. W.; Wang, Y. L.; Wang, L.; Zhang, J. M.; Yin, S. L. One-pot synthesis inorganic-organic hybrid PdNi bimetallenes for PET electrocatalytic value-added transformation. Adv. Funct. Mater. 2024, 34, 2401796.

[95]

Aziz, A.; Yu, W.; Tang, R.; Crespo-Otero, R.; Tommaso, D. D.; Nishihara, H. Theoretical insights into the role of defects in the optimization of the electrochemical capacitance of graphene. Energy Mater. Devices 2024, 2, 9370035.

[96]

Liu, X.; Fang, Z. Y.; Xiong, D. K.; Gong, S. Q.; Niu, Y. L.; Chen, W.; Chen, Z. F. Upcycling PET in parallel with energy-saving H2 production via bifunctional nickel-cobalt nitride nanosheets. Nano Res. 2023, 16, 4625–4633.

[97]

Chen, Z. J.; Wei, W.; Shen, Y. S.; Ni, B. J. Defective nickel sulfide hierarchical structures for efficient electrochemical conversion of plastic waste to value-added chemicals and hydrogen fuel. Green Chem. 2023, 25, 5979–5988.

[98]

Mao, Y.; Fan, S. Y.; Li, X. Y.; Shi, J. G.; Wang, M. F.; Niu, Z. D.; Chen, G. H. Trash to treasure: Electrocatalytic upcycling of polyethylene terephthalate (PET) microplastic to value-added products by Mn0.1Ni0.9Co2O4– δ RSFs spinel. J. Hazardous Mater. 2023, 457, 131743.

[99]

Liu, X.; Fang, Z.; Teng, X.; Niu, Y.; Gong, S.; Chen, W.; Meyer, T. J.; Chen, Z. Paired formate and H2 productions via efficient bifunctional Ni–Mo nitride nanowire electrocatalysts. J. Energy Chem. 2022, 72, 432–441.

[100]

Zhang, H. G.; Wang, Y. L.; Li, X. M.; Deng, K.; Yu, H. J.; Xu, Y.; Wang, H. J.; Wang, Z. Q.; Wang, L. Electrocatalytic upcycling of polyethylene terephthalate plastic to formic acid coupled with energy-saving hydrogen production over hierarchical Pd-doped NiTe nanoarrays. Appl. Catal. B: Environ. 2024, 340, 123236.

[101]

Kang, H. X.; He, D.; Yan, X. X.; Dao, B. M.; Williams, N. B.; Elliott, G. I.; Streater, D.; Nyakuchena, J.; Huang, J. E.; Pan, X. Q. et al. Cu promoted the dynamic evolution of Ni-based catalysts for polyethylene terephthalate plastic upcycling. ACS Catal. 2024, 14, 5314–5325.

[102]

Na, J.; Seo, B.; Kim, J.; Lee, C. W.; Lee, H.; Hwang, Y. J.; Min, B. K.; Lee, D. K.; Oh, H. S.; Lee, U. General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation. Nat. Commun. 2019, 10, 5193.

[103]

Wang, J. Y.; Li, X.; Wang, M. L.; Zhang, T.; Chai, X. Y.; Lu, J. L.; Wang, T. F.; Zhao, Y. X.; Ma, D. Electrocatalytic valorization of poly(ethylene terephthalate) plastic and CO2 for simultaneous production of formic acid. ACS Catal. 2022, 12, 6722–6728.

[104]

Qi, J.; Du, Y. D.; Yang, Q.; Jiang, N.; Li, J. C.; Ma, Y.; Ma, Y. J.; Zhao, X.; Qiu, J. S. Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering. Nat. Commun. 2023, 14, 6263.

[105]

Ren, T. L.; Yu, Z.; Yu, H. J.; Deng, K.; Wang, Z. Q.; Li, X. N.; Wang, H. J.; Wang, L.; Xu, Y. Sustainable ammonia electrosynthesis from nitrate wastewater coupled to electrocatalytic upcycling of polyethylene terephthalate plastic waste. ACS Nano 2023, 17, 12422–12432.

[106]

Liu, F. L.; Gao, X. T.; Shi, R.; Guo, Z. X.; Tse, E. C. M.; Chen, Y. Concerted and selective electrooxidation of polyethylene-terephthalate-derived alcohol to glycolic acid at an industry-level current density over a Pd-Ni(OH)2 Catalyst. Angew. Chem., Int. Ed. 2023, 62, e202300094.

[107]

Liu, X.; He, X. Y.; Xiong, D. K.; Wang, G. Y.; Tu, Z. T.; Wu, D. L.; Wang, J. Y.; Gu, J.; Chen, Z. F. Electro-reforming of PET plastic to C2 chemicals with concurrent generation of hydrogen and electric energy. ACS Catal. 2024, 14, 5366–5376.

[108]

Wang, Y. X.; Liu, K. S.; Liu, F. L.; Liu, C. X.; Shi, R.; Chen, Y. Selective electro-reforming of waste polyethylene terephthalate-derived ethylene glycol into C2 chemicals with long-term stability. Green Chem. 2023, 25, 5872–5877.

[109]

Chen, J. L.; Jiang, M. M.; Zhang, F. Z.; Wang, L.; Yang, J. P. Interstitial boron atoms in Pd aerogel selectively switch the pathway for glycolic acid synthesis from waste plastics. Adv. Mater. 2024, 36, 2401867.

[110]

Uekert, T.; Kuehnel, M. F.; Wakerley, D. W.; Reisner, E. Plastic waste as a feedstock for solar-driven H2 generation. Energy Environ. Sci. 2018, 11, 2853–2857.

[111]

Zhang, S.; Li, H. B.; Wang, L.; Liu, J. D.; Liang, G. J.; Davey, K.; Ran, J. R.; Qiao, S. Z. Boosted photoreforming of plastic waste via defect-rich NiPS3 nanosheets. J. Am. Chem. Soc. 2023, 145, 6410–6419.

[112]

Liu, X.; Yang, Y.; Wan, S. P.; Li, S.; Ou, M.; Song, F. J.; Fan, X.; Zhong, Q. Tuning the surface hydrophilicity of a C3N4 nanosheet for efficient photocatalytic H2 evolution coupled with microplastic degradation. Int. J. Hydrogen Energy 2023, 48, 27599–27610.

[113]

Lin, C. Y.; Huang, S. C.; Lin, Y. G.; Hsu, L. C.; Yi, C. T. Electrosynthesized Ni-P nanospheres with high activity and selectivity towards photoelectrochemical plastics reforming. Appl. Catal. B: Environ. 2021, 296, 120351.

[114]

Feng, X.; Yang, L. J.; Zhang, L. Sustainable solar-and electro-driven production of high concentration H2O2 coupled to electrocatalytic upcycling of polyethylene terephthalate plastic waste. Chem. Eng. J. 2024, 482, 149191.

[115]

Bhattacharjee, S.; Rahaman, M.; Andrei, V.; Miller, M.; Rodríguez-Jiménez, S.; Lam, E.; Pornrungroj, C.; Reisner, E. Photoelectrochemical CO2-to-fuel conversion with simultaneous plastic reforming. Nat. Synth. 2023, 2, 182–192.

[116]

Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

[117]

Lo, S. H.; Senthil Raja, D.; Chen, C. W.; Kang, Y. H.; Chen, J. J.; Lin, C. H. Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr). Dalton Trans. 2016, 45, 9565–9573.

[118]

Ren, J. W.; Dyosiba, X.; Musyoka, N. M.; Langmi, H. W.; North, B. C.; Mathe, M.; Onyango, M. S. Green synthesis of chromium-based metal-organic framework (Cr-MOF) from waste polyethylene terephthalate (PET) bottles for hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 18141–18146.

Nano Research
Article number: 94907101
Cite this article:
Li X, Jiang Z, Kou Z, et al. Cascade degradation and electrocatalytic upcycling of waste poly(ethylene terephthalate) to valued products. Nano Research, 2025, 18(1): 94907101. https://doi.org/10.26599/NR.2025.94907101
Topics:

580

Views

130

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 August 2024
Revised: 27 October 2024
Accepted: 30 October 2024
Published: 23 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return