Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Si lattice-based linewidth, as the most used calibrator in the semiconductor industry, failed to meet the nanoscale demands of critical dimensions (CD). In 2018, the Si{220} lattice spacing was recommended as a secondary realization of the meter definition, however, Si lattices as nanoscale rulers can only be used in ultra-high vacuum (UHV) environments. For the first time, we designed two-dimensional (2D) supramolecular self-assembly monolayers (SAMs) as a new generation of nanoscale rulers using scanning tunneling microscopy (STM) technology in atmospheric environment. Three SAMs nanoscale rulers were selected among seven types of SAMs based on their self-assembly behaviors and thermodynamic stability. One of these SAMs nanoscale rulers was used to calibrate the STM images through lattice perspective transformation method, and directly determine the lattice length along the nanoscale rulers’ lattice direction without calibration, proving the feasibility of SAMs nanoscale rulers in nanometrology. The construction of SAMs nanoscale rulers was straightforward and manageable in the atmosphere, significantly lowering the complexity of producing nano precise measurement tools. Identifying the ideal SAMs for use as nanoscale rulers holds immense potential to significantly reduce the cost of calibration in chip industries.
Pisani, M.; Yacoot, A.; Balling, P.; Bancone, N.; Birlikseven, C.; Çelik, M.; Flügge, J.; Hamid, R.; Köchert, P.; Kren, P. et al. Comparison of the performance of the next generation of optical interferometers. Metrologia 2012, 49, 455–467.
Lawall, J. R. Fabry-Perot metrology for displacements up to 50 mm. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 2005, 22, 2786–2798.
Durand, M.; Lawall, J.; Wang, Y. C. High-accuracy Fabry-Perot displacement interferometry using fiber lasers. Meas. Sci. Technol. 2011, 22, 094025.
Çelik, M.; Hamid, R.; Kuetgens, U.; Yacoot, A. Picometre displacement measurements using a differential Fabry-Perot optical interferometer and an x-ray interferometer. Meas. Sci. Technol. 2012, 23, 085901.
Mohr, P. J.; Taylor, B. N.; Newell, D. B. CODATA recommended values of the fundamental physical constants: 2010. Rev. Mod. Phys. 2012, 84, 1527–1605.
Dai, G. L.; Hahm, K.; Bosse, H.; Dixson, R. G. Comparison of line width calibration using critical dimension atomic force microscopes between PTB and NIST. Meas. Sci. Technol. 2017, 28, 065010.
Cresswell, M. W.; Guthrie, W. F.; Dixson, R. G.; Allen, R. A.; Murabito, C. E.; Martinez De pinillos, J. V. RM 8111: Development of a prototype linewidth standard. J. Res. Natl. Inst. Stand. Technol. 2006, 111, 187–203.
Dixson, R. G.; Allen, R. A.; Guthrie, W. F.; Cresswell, M. W. Traceable calibration of critical-dimension atomic force microscope linewidth measurements with nanometer uncertainty. J. Vac. Sci. Technol. B 2005, 23, 3028–3032.
Orji, N. G.; Dixson, R. G.; Garcia-Gutierrez, D. I.; Bunday, B. D.; Bishop, M.; Cresswell, M. W.; Allen, R. A.; Allgair, J. A. Transmission electron microscope calibration methods for critical dimension standards. J. Micro/Nanolithogr. MEMS MOEMS 2016, 15, 044002.
Dai, G. L.; Heidelmann, M.; Kübel, C.; Prang, R.; Fluegge, J.; Bosse, H. Reference nano-dimensional metrology by scanning transmission electron microscopy. Meas. Sci. Technol. 2003, 24, 085001.
Dai, G. L.; Hässler-Grohne, W.; Hueser, D.; Wolff, H.; Flügge, J.; Bosse, H. New developments at Physikalisch Technische Bundesanstalt in three-dimensional atomic force microscopy with tapping and torsion atomic force microscopy mode and vector approach probing strategy. J. Micro/Nanolithogr. MEMS MOEMS 2012, 11, 011004.
Dai, G. L.; Zhu, F.; Heidelmann, M.; Fritz, G.; Bayer, T.; Kalt, S.; Flüegge, J. Development and characterisation of a new line width reference material. Meas. Sci. Technol. 2015, 26, 115006.
Kuzin, A. Y.; Todua, P. A.; Panov, V. I.; Oreshkin, A. I. Reconstructed silicon surfaces for calibration of scanning tunnel microscopes. Meas. Tech. 2012, 55, 773–779.
Chen, X. D.; Lenhert, S.; Hirtz, M.; Lu, N.; Fuchs, H.; Chi, L. F. Langmuir-Blodgett patterning: A bottom-up way to build mesostructures over large areas. Acc. Chem. Res. 2007, 40, 393–401.
Ciesielski, A.; Palma, C. A.; Bonini, M.; Samorì, P. Towards supramolecular engineering of functional nanomaterials: Pre-programming multi-component 2D self-assembly at solid-liquid interfaces. Adv. Mater. 2010, 22, 3506–3520.
Song, C. K.; Ye, B. Y.; Xu, J. Y.; Chen, J. H.; Shi, W.; Yu, C. P.; An, C. W.; Zhu, J. W.; Zhang, W. C. Large-area nanosphere self-assembly monolayers for periodic surface nanostructures with ultrasensitive and spatially uniform SERS sensing. Small 2022, 18, 2104202.
Gurdumov, K.; Mazur, U.; Hipps, K. W. Self-assembly dynamics and stability through concentration control at the solution/HOPG interface. J. Phys. Chem. C 2022, 126, 12916–12927.
Hu, T. Z.; Minoia, A.; Velpula, G.; Ryskulova, K.; Van Hecke, K.; Lazzaroni, R.; Mali, K. S.; Hoogenboom, R.; De Feyter, S. From one-dimensional disordered racemate to ordered racemic conglomerates through metal-coordination-driven self-assembly at the liquid-solid interface. Chem.—Eur. J. 2024, 30, e202302545.
Velpula, G.; Martin, C.; Daelemans, B.; Hennrich, G.; Van der Auweraer, M.; Mali, K. S.; De Feyter, S. “Concentration-in-Control” self-assembly concept at the liquid-solid interface challenged. Chem. Sci. 2021, 12, 13167–13176.
Dong, M. Q.; Hu, T. Z.; Wang, Y.; Pang, P.; Wang, Y. J.; Miao, X. R.; Li, B.; Deng, W. L. Halogen-bonded building block for 2D self-assembly: Triggered by hydrogen-bonding motifs relative to the terminal functions of the side chains. Appl. Surf. Sci. 2020, 515, 145983.
Peng, X.; Xiao, Y. C.; Mu, B.; Deng, K.; Tian, W.; Xiao, X. W.; Li, X. K.; Zeng, Q. D. Programmable binary crystallization behaviors assisted by hydrogen bond on HOPG surface. Appl. Surf. Sci. 2021, 565, 150529.
Peng, X.; Geng, Y. F.; Zhang, M.; Cheng, F. L.; Cheng, L. X.; Deng, K.; Zeng, Q. D. Guest selectivity in the supramolecular host networks fabricated by van der Waals force and hydrogen bond. Nano Res. 2019, 12, 537–542.
Lei, P.; Luo, W. D.; Deng, K.; Tu, B.; Xiao, X. W.; Fang, Q. J.; Wang, C.; Zeng, Q. D. Abundant two-dimensional hydrogen-bonded co-assemblies of tetracarboxylic acid derivatives and pyridine derivatives studied by means of scanning tunneling microscopy. New J. Chem. 2023, 47, 18010–18017.
Wu, Y. C.; Li, J. X.; Yuan, Y. L.; Dong, M. Q.; Zha, B.; Miao, X. R.; Hu, Y.; Deng, W. L. Halogen bonding versus hydrogen bonding induced 2D self-assembled nanostructures at the liquid-solid interface revealed by STM. Phys. Chem. Chem. Phys. 2017, 19, 3143–3150.
Li, J. Q.; Luo, W. D.; Zhang, S. Q.; Ma, C. Y.; Xiao, X. W.; Duan, W. B.; Zeng, Q. D. The effect of multiple pairs of meta-dicarboxyl groups on molecular self-assembly and the selective adsorption of coronene by hydrogen bonding and van der Waals forces. Nano Res. 2022, 15, 1691–1697.
Meng, T.; Lei, P.; Zhang, Y. F.; Deng, K.; Xiao, X. W.; Zeng, Q. D. Coronene and bipyridine derivatives inducing diversified structural transitions of carboxylic acids at the liquid/solid interface. Chin. J. Chem. 2022, 40, 2727–2733.
Zhang, S. Q.; Chen, C.; Li, J. Q.; Ma, C. Y.; Li, X. K.; Ma, W.; Zhang, M.; Cheng, F. L.; Deng, K.; Zeng, Q. D. The self-assembly and pyridine regulation of a hydrogen-bonded dimeric building block formed by a low-symmetric aromatic carboxylic acid. Nanoscale 2022, 14, 2419–2426.
Li, J. Q.; Tu, B.; Li, X. K.; Ma, C.Y.; Chen, C.; Duan, W. B.; Xiao, X. W.; Zeng, Q. D. Self-assembled flower structures formed by C3-symmetric aromatic carboxylic acids with meta-carboxyl groups. Chem. Commun. 2019, 55, 11599–11602.
Blunt, M. O.; Russell, J. C.; Giménez-López, M. D. C.; Garrahan, J. P.; Lin, X.; Schröder, M.; Champness, N. R.; Beton, P. H. Random tiling and topological defects in a two-dimensional molecular network. Science 2008, 322, 1077–1081.
Blunt, M. O.; Lin, X.; del Carmen Gimenez-Lopez, M.; Schröder, M.; Champness, N. P.; Beton, P. H. Directing two-dimensional molecular crystallization using guest templates. Chem. Commun. 2008, 2304–2306.
Li, M.; Deng, K.; Lei, S. B.; Yang, Y. L.; Wang, T. S.; Shen, Y. T.; Wang, C. R.; Zeng, Q. D.; Wang, C. Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface. Angew. Chem., Int. Ed. 2008, 47, 6717–6721.
Zhou, H.; Dang, H. N.; Yi, J. H.; Nanci, A.; Rochefort, A.; Wuest, J. D. Frustrated 2D molecular crystallization. J. Am. Chem. Soc. 2007, 129, 13774–13775.
Wang, J.; Wang, L. M.; Lu C.; Yan, H. J.; Wang, S. X.; Wang, D. Formation of multicomponent 2D assemblies of C2v-symmetric terphenyl tetracarboxylic acid at the solid/liquid interface: Recognition, selection, and transformation. RSC Adv. 2019, 9, 11659–11663.
Steeno, R.; Minoia, A.; Gimenez-Lopez, M, C.; Blunt, M. O.; Champness, N. R.; Lazzaroni, R.; Mali, K. S.; De Feyter, S. Molecular dopant determines the structure of a physisorbed self-assembled molecular network. Chem. Commun. 2021, 57, 1454–1457.
Lackinger, M.; Griessl, S.; Heckl, W. M.; Hietschold, M.; Flynn, G. W. Self-assembly of trimesic acid at the liquid-solid interface-a study of solvent-induced polymorphism. Langmuir 2005, 21, 4984–4988.
Zhang, S. Q.; Li, J. Q.; Gan, L. L.; Ma, L.; Ma, W.; Zhang, M.; Cheng, F. L.; Deng K.; Zeng, Q. D. The self-assembly of a pair of low-symmetry tetracarboxylic acid molecules and their co-assembly with bridging molecules at the liquid-solid interface. Nanoscale 2023, 15, 4353–4360.
Peng, X.; Gan, L. L.; Zhai, W. C.; Chen, X. L.; Deng, K.; Duan, W. B.; Li W.; Zeng, Q. D. Two-dimensional self-assembly and co-assembly of two tetracarboxylic acid derivatives investigated by STM. Nanoscale Adv. 2023, 5, 4752–4757.
Meng, T.; Xiao, X. W.; Deng, K.; Zeng, Q. D. Study on 2D molecular networks of flexible pentacarboxylic acid ligands induced by ether bonds in response to selective guest inclusion. Langmuir 2024, 40, 10737–10744.
Lei, P.; Feng, Y.; Meng, T.; Zhang, Y. F.; Xiao, X. W.; Deng, K.; Liu,Y.; Zeng Q. D. Effects of functional groups and side chains on assembly of “X”-shaped new aggregation-induced emission molecules. J. Colloid Interface Sci. 2022, 623, 238–246.
Peng, X.; Meng, T.; Wang, L. L.; Cheng, L. X.; Zhai, W. C.; Deng, K.; Ma, C. Q.; Zeng, Q. D. Self-assembled nanostructures of a series of linear oligothiophene derivatives adsorbed on surfaces. Chin. Chem. Lett. 2023, 34, 107568.
Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.
Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 45, 13244–13249.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
359
Views
56
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).