Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nanofluidic memristors, which use ions in electrolyte solutions as carriers, have been developed rapidly and brought new opportunities for the development of neuromorphic devices. Utilizing the transport and accumulation of ions in nanochannels to process information is an endeavor to realize the nanofluidic memristor. In this study, we report a new nanofluidic memristor, which is a polydimethylsiloxane (PDMS)-glass chip with two platinum (Pt) electrodes and well-aligned multi-nanochannels within PDMS for ion enrichment and depletion. The device not only exhibits typical bipolar memristive behavior and ion current rectification (ICR) but also demonstrates excellent endurance, maintaining stable performance after 100 sweep cycles. We systematically investigate the key factors affecting ion transport behavior in this memristor. The results show that the ICR ratio of the current–voltage (I–V) hysteresis curves decreases with increasing scan rate and solution concentration. Zeta potential measurements are introduced to reveal that the PDMS surface carries more negative charges in higher pH solutions, resulting in more pronounced memristive and ICR effects. Furthermore, our memristor can simulate short-term synaptic plasticity, such as paired-pulse facilitation (PPF) and paired-pulse depression (PPD), with a relatively low energy consumption of 12 pJ per spike per channel. Potentially, the inherent accessibility and robustness of our nanofluidic memristors facilitate the optimization of device structure and performance. These important observations and investigations lay a foundation for advancing energy-saving and efficient neuromorphic computing.
Goswami, S.; Pramanick, R.; Patra, A.; Rath, S. P.; Foltin, M.; Ariando, A.; Thompson, D.; Venkatesan, T.; Goswami, S.; Williams, R. S. Decision trees within a molecular memristor. Nature 2021, 597, 51–56.
Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519.
Zhu, J. D.; Zhang, T.; Yang, Y. C.; Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 2020, 7, 011312.
Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80–83.
Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.
Lanza, M.; Sebastian, A.; Lu, W. D.; Gallo, M. L.; Chang, M. F.; Akinwande, D.; Puglisi, F. M.; Alshareef, H. N.; Liu, M.; Roldan, J. B. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 2022, 376, eabj9979.
Wang, Z. R.; Wu, H. Q.; Burr, G. W.; Hwang, C. S.; Wang, K. L.; Xia, Q. F.; Yang, J. J. Resistive switching materials for information processing. Nat. Rev. Mater. 2020, 5, 173–195.
Zhang, J. R.; Liu, W. C.; Dai, J. Q.; Xiao, K. Nanoionics from biological to artificial systems: An alternative beyond nanoelectronics. Adv. Sci. 2022, 9, 2200534.
Guerrette, J. P.; Zhang, B. Scan-rate-dependent current rectification of cone-shaped silica nanopores in quartz nanopipettes. J. Am. Chem. Soc. 2010, 132, 17088–17091.
Wang, D. C.; Kvetny, M.; Liu, J.; Brown, W.; Li, Y.; Wang, G. L. Transmembrane potential across single conical nanopores and resulting memristive and memcapacitive ion transport. J. Am. Chem. Soc. 2012, 134, 3651–3654.
Zhang, P.; Xia, M.; Zhuge, F. W.; Zhou, Y.; Wang, Z. Y.; Dong, B. Y.; Fu, Y. Y.; Yang, K. C.; Li, Y.; He, Y. H. et al. Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses. Nano Lett. 2019, 19, 4279–4286.
Najem, J. S.; Taylor, G. J.; Weiss, R. J.; Hasan, M. S.; Rose, G.; Schuman, C. D.; Belianinov, A.; Collier, C. P.; Sarles, S. A. Memristive ion channel-doped biomembranes as synaptic mimics. ACS Nano 2018, 12, 4702–4711.
Bu, Y.; Ahmed, Z.; Yobas, L. A nanofluidic memristor based on ion concentration polarization. Analyst 2019, 144, 7168–7172.
Xiong, T. Y.; Li, C. W.; He, X. L.; Xie, B. Y.; Zong, J. W.; Jiang, Y. N.; Ma, W. J.; Wu, F.; Fei, J. J.; Yu, P. et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 2023, 379, 156–161.
Robin, P.; Kavokine, N.; Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 2021, 373, 687–691.
Robin, P.; Emmerich, T.; Ismail, A.; Niguès, A.; You, Y.; Nam, G. H.; Keerthi, A.; Siria, A.; Geim, A. K.; Radha, B. et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 2023, 379, 161–167.
Xu, B. Y.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Large scale lithography-free nano channel array on polystyrene. Lab Chip 2010, 10, 2894–2901.
Peng, R.; Li, D. Q. Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing. Lab Chip 2016, 16, 3767–3776.
Cheng, L. J.; Guo, L. J. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices. ACS Nano 2009, 3, 575–584.
Momotenko, D.; Girault, H. H. Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores. J. Am. Chem. Soc. 2011, 133, 14496–14499.
Lim, A. E.; Lim, C. Y.; Lam, Y. C. Electroosmotic flow hysteresis for dissimilar ionic solutions. Biomicrofluidics 2015, 9, 024113.
Zhao, C. L.; Yang, C. Advances in electrokinetics and their applications in micro/nano fluidics. Microfluid. Nanofluid. 2012, 13, 179–203.
Wang, D. C.; Brown, W.; Li, Y.; Kvetny, M.; Liu, J.; Wang, G. L. Correlation of ion transport hysteresis with the nanogeometry and surface factors in single conical nanopores. Anal. Chem. 2017, 89, 11811–11817.
Wang, D. C.; Liu, J.; Kvetny, M.; Li, Y.; Brown, W.; Wang, G. L. Physical origin of dynamic ion transport features through single conical nanopores at different bias frequencies. Chem. Sci. 2014, 5, 1827–1832.
Wang, D. C.; Brown, W.; Li, Y.; Kvetny, M.; Liu, J.; Wang, G. L. Hysteresis charges in the dynamic enrichment and depletion of ions in single conical nanopores. ChemElectroChem 2018, 5, 3089–3095.
Liu, Z.; Liu, X. Y.; Wang, Y. F.; Yang, D. F.; Li, C. Z. Ion current rectification in asymmetric charged bilayer nanochannels. Electrochim. Acta 2022, 403, 139706.
Liu, Z. L.; Hedayati, P.; Sudhölter, E. J. R.; Haaring, R.; Shaik, A. R.; Kumar, N. Adsorption behavior of anionic surfactants to silica surfaces in the presence of calcium ion and polystyrene sulfonate. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 602, 125074.
Tseng, S.; Lin, S. C.; Lin, C. Y.; Hsu, J. P. Influences of cone angle and surface charge density on the ion current rectification behavior of a conical nanopore. J. Phys. Chem. C 2016, 120, 25620–25627.
Yusko, E. C.; An, R.; Mayer, M. Electroosmotic flow can generate ion current rectification in nano- and micropores. ACS Nano 2010, 4, 477–487.
Lan, W. J.; Holden, D. A.; White, H. S. Pressure-dependent ion current rectification in conical-shaped glass nanopores. J. Am. Chem. Soc. 2011, 133, 13300–13303.
Siwy, Z. S. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 2006, 16, 735–746.
Xiong, T. Y.; Zhang, K. L.; Jiang, Y. N.; Yu, P.; Mao, L. Q. Ion current rectification: From nanoscale to microscale. Sci. China Chem. 2019, 62, 1346–1359.
Schoch, R. B.; van Lintel, H.; Renaud, P. Effect of the surface charge on ion transport through nanoslits. Phys. Fluids 2005, 17, 100604.
Yang, R.; Huang, H. M.; Guo, X. Memristive synapses and neurons for bioinspired computing. Adv. Electron. Mater. 2019, 5, 1900287.
621
Views
200
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).