Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Surface-enhanced Raman scattering (SERS) is a non-invasive spectroscopic technique that provides specific chemical fingerprint information for biomarkers in cancer and pathogen diagnosis. However, the SERS strategies are limited by the non-specific interactions between substrates and co-existing substances in biological matrices and the challenges of obtaining molecular fingerprint information from the complex vibrational spectrum. In recent years, the rapid development of novel substrates with high SERS activity has opened up new opportunities for their applications in cancer and pathogen diagnosis. The aim of this review is to present the recent progress and perspectives of novel SERS-based substrates for cancer and pathogen diagnostic applications. First, we will introduce recently developed SERS-active nanomaterials and discuss the influencing factors of the SERS signals. Second, the advantages of SERS in the diagnosis of cancer and pathogens will be given. Third, we will review the latest breakthroughs in cancer and pathogen detection research with SERS technology, as well as the new opportunities for SERS applications brought about by artificial intelligence (AI) technology. In addition, the novel microfluidic-SERS platforms for cancer and pathogens diagnosis will also be discussed. Finally, we will summarize the challenges and future perspectives of SERS technology in the field of early cancer diagnosis and rapid pathogen detection. It is highly expected that this review could benefit a comprehensive understanding of the research status of the SERS-active nanomaterials and arouse the research enthusiasm for them, leading to accelerated clinical translation of SERS technology in cancer and pathogen diagnosis.
Yuan, K. S.; Jurado-Sánchez, B.; Escarpa, A. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: A review. J. Nanobiotechnol. 2022, 20, 537.
Fitzgerald, R. C.; Antoniou, A. C.; Fruk, L.; Rosenfeld, N. The future of early cancer detection. Nat. Med. 2022, 28, 666–677.
Lyu, N.; Pedersen, B.; Shklovskaya, E.; Rizos, H.; Molloy, M. P.; Wang, Y. L. SERS characterization of colorectal cancer cell surface markers upon anti-EGFR treatment. Exploration 2022, 2, 20210176.
Zhang, Y. Q.; Liu, K. X.; Yu, J. K.; Chen, H. F.; Fu, R.; Zhu, S. Q.; Chen, Z. Q.; Wang, S. P.; Lu, S. Y. Single stain hyperspectral imaging for accurate fungal pathogens identification and quantification. Nano Res. 2022, 15, 6399–6406.
Zhu, Y. Q.; Huang, W. Q.; Chen, G.; Xia, L.; You, Y. Z.; Yu, Y. Sticking-bacteria gel enhancing anti-multidrug-resistant microbial therapy under ultrasound. Nano Res. 2022, 15, 9105–9113.
Ding, Y.; Chen, J. J.; Wu, Q.; Fang, B.; Ji, W. H.; Li, X.; Yu, C. M.; Wang, X. C.; Cheng, X. M.; Yu, H. D. et al. Artificial intelligence-assisted point-of-care testing system for ultrafast and quantitative detection of drug-resistant bacteria. SmartMat 2023, 5, e1214.
Cialla-May, D.; Zheng, X. S.; Weber, K.; Popp, J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics. Chem. Soc. Rev. 2017, 46, 3945–3961.
Lu, L. Y.; Zhou, Y.; Zheng, T. T.; Tian, Y. SERS and EC dual-mode detection for dopamine based on WO3–SnO2 nanoflake arrays. Nano Res. 2023, 16, 4049–4054.
Yang, Y. J.; Wu, S.; Chen, Y. L.; Ju, H. X. Surface-enhanced Raman scattering sensing for detection and mapping of key cellular biomarkers. Chem. Sci. 2023, 14, 12869–12882.
Yang, B.; Wang, Y.; Guo, S.; Jin, S. L.; Park, E.; Chen, L.; Jung, Y. M. Charge transfer study for semiconductor and semiconductor/metal composites based on surface-enhanced Raman scattering. Bull. Korean Chem. Soc. 2021, 42, 1411–1418.
Langer, J.; de Aberasturi, D. J.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117.
Smith, W. E. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem. Soc. Rev. 2008, 37, 955–964.
Haldavnekar, R.; Venkatakrishnan, K.; Tan, B. Non plasmonic semiconductor quantum SERS probe as a pathway for in vitro cancer detection. Nat. Commun. 2018, 9, 3065.
Liu, Y.; Chui, K. K.; Xia, X.; Zhang, H.; Zhuo, X.; Wang, J. Selective deposition of a MOF at the spikes of Au nanostars for SERS detection. Nano Res. 2024, 17, 9166–9173.
Qiu, C. G.; Zhang, W.; Zhou, Y. H.; Cui, H. W.; Xing, Y. L.; Yu, F. B.; Wang, R. Highly sensitive surface-enhanced Raman scattering (SERS) imaging for phenotypic diagnosis and therapeutic evaluation of breast cancer. Chem. Eng. J. 2023, 459, 141502.
Awiaz, G.; Lin, J.; Wu, A. G. Recent advances of Au@Ag core-shell SERS-based biosensors. Exploration 2023, 3, 20220072.
Tan, H. S.; Wang, T.; Sun, H. N.; Liu, A. H.; Li, S. S. Advances of surface-enhanced Raman spectroscopy in exosomal biomarkers analysis. TrAC Trends Anal. Chem. 2023, 167, 117253.
Batool, S. M.; Yekula, A.; Khanna, P.; Hsia, T.; Gamblin, A. S.; Ekanayake, E.; Escobedo, A. K.; You, D. G.; Castro, C. M.; Im, H. et al. The liquid biopsy consortium: Challenges and opportunities for early cancer detection and monitoring. Cell Rep. Med. 2023, 4, 101198.
Chisanga, M.; Muhamadali, H.; Ellis, D. L.; Goodacre, R. Enhancing disease diagnosis: Biomedical applications of surface-enhanced Raman scattering. Appl. Sci. 2019, 9, 1163.
Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.
Liu, B.; Thielert, B.; Reutter, A.; Stosch, R.; Lemmens, P. Quantifying the contribution of chemical enhancement to SERS: A model based on the analysis of light-induced degradation processes. J. Phys. Chem. C 2019, 123, 19119–19124.
Jin, J.; Guo, Z. N.; Fan, D. Y.; Zhao, B. Spotting the driving forces for SERS of two-dimensional nanomaterials. Mater. Horiz. 2023, 10, 1087–1104.
Lan, L. L.; Gao, Y. M.; Fan, X. C.; Li, M. Z.; Hao, Q.; Qiu, T. The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys. 2021, 16, 43300.
Fateixa, S.; Nogueira, H. I. S.; Trindade, T. Hybrid nanostructures for SERS: Materials development and chemical detection. Phys. Chem. Chem. Phys. 2015, 17, 21046–21071.
Liu, Y. W.; Ma, H.; Han, X. X.; Zhao, B. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: Synergistic contribution of plasmons and charge transfer. Mater. Horiz. 2021, 8, 370–382.
Gahlaut, S. K.; Savargaonkar, D.; Sharan, C.; Yadav, S.; Mishra, P.; Singh, J. P. SERS platform for dengue diagnosis from clinical samples employing a hand held Raman spectrometer. Anal. Chem. 2020, 92, 2527–2534.
Zhang, Y. Y.; Mi, X.; Tan, X. Y.; Xiang, R. Recent progress on liquid biopsy analysis using surface-enhanced Raman spectroscopy. Theranostics 2019, 9, 491–525.
Blanco-Formoso, M.; Alvarez-Puebla, R. A. Cancer diagnosis through SERS and other related techniques. Int. J. Mol. Sci. 2020, 21, 2253.
Wu, L.; Wang, Z. Y.; Zhang, Y. Z.; Fei, J. Y.; Chen, H.; Zong, S. F.; Cui, Y. P. In situ probing of cell-cell communications with surface-enhanced Raman scattering (SERS) nanoprobes and microfluidic networks for screening of immunotherapeutic drugs. Nano Res. 2017, 10, 584–594.
Bodelón, G.; Montes-García, V.; López-Puente, V.; Hill, E. H.; Hamon, C.; Sanz-Ortiz, M. N.; Rodal-Cedeira, S.; Costas, C.; Celiksoy, S.; Pérez-Juste, I. et al. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat. Mater. 2016, 15, 1203–1211.
Sitjar, J.; Liao, J. D.; Lee, H.; Tsai, H. P.; Wang, J. R. Innovative and versatile surface-enhanced Raman spectroscopy-inspired approaches for viral detection leading to clinical applications: A review. Anal. Chim. Acta 2024, 1325, 342917.
Constantinou, M.; Hadjigeorgiou, K.; Abalde-Cela, S.; Andreou, C. Label-free sensing with metal nanostructure-based surface-enhanced Raman spectroscopy for cancer diagnosis. ACS Appl. Nano Mater. 2022, 5, 12276–12299.
Liu, H. Q.; Gao, X.; Xu, C.; Liu, D. B. SERS tags for biomedical detection and bioimaging. Theranostics 2022, 12, 1870–1903.
Gong, T. X.; Das, C. M.; Yin, M. J.; Lv, T. R.; Singh, N. M.; Soehartono, A. M.; Singh, G.; An, Q. F.; Yong, K. T. Development of SERS tags for human diseases screening and detection. Coord. Chem. Rev. 2022, 470, 214711.
de Aberasturi, D. J.; Henriksen-Lacey, M.; Litti, L.; Langer, J.; Liz-Marzán, L. M. Using SERS tags to image the three-dimensional structure of complex cell models. Adv. Funct. Mater. 2020, 30, 1909655.
Huang, L. P.; Sun, H. W.; Sun, L. B.; Shi, K. Q.; Chen, Y. Z.; Ren, X. Q.; Ge, Y. C.; Jiang, D. F.; Liu, X. H.; Knoll, W. et al. Rapid, label-free histopathological diagnosis of liver cancer based on Raman spectroscopy and deep learning. Nat. Commun. 2023, 14, 48.
Lee, S.; Jue, M.; Lee, K.; Paulson, B.; Oh, J.; Cho, M.; Kim, J. K. Early-stage diagnosis of bladder cancer using surface-enhanced Raman spectroscopy combined with machine learning algorithms in a rat model. Biosens. Bioelectron. 2024, 246, 115915.
Si, Y. M.; Xu, L.; Deng, T.; Zheng, J.; Li, J. S. Catalytic hairpin self-assembly-based SERS sensor array for the simultaneous measurement of multiple cancer-associated miRNAs. ACS Sens. 2020, 5, 4009–4016.
Wang, J.; Koo, K. M.; Trau, M. Tetraplex Immunophenotyping of cell surface proteomes via synthesized plasmonic nanotags and portable Raman spectroscopy. Anal. Chem. 2022, 94, 14906–14916.
Gersten, J.; Nitzan, A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 1980, 73, 3023–3037.
Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth, F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.; Hueso, L. E. et al. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat. Commun. 2012, 3, 684.
Li, A. R.; Isaacs, S.; Abdulhalim, I.; Li, S. Z. Ultrahigh enhancement of electromagnetic fields by exciting localized with extended surface plasmons. J. Phys. Chem. C 2015, 119, 19382–19389.
Wang, X. T.; Ma, G. S.; Li, A. R.; Yu, J.; Yang, Z.; Lin, J.; Li, A.; Han, X. D.; Guo, L. Composition-adjustable Ag–Au substitutional alloy microcages enabling tunable Plasmon resonance for ultrasensitive SERS. Chem. Sci. 2018, 9, 4009–4015.
Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.
Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.
Markin, A. V.; Markina, N. E.; Popp, J.; Cialla-May, D. Copper nanostructures for chemical analysis using surface-enhanced Raman spectroscopy. TrAC Trends Anal. Chem. 2018, 108, 247–259.
Lay, C. L.; Koh, C. S. L.; Wang, J.; Lee, Y. H.; Jiang, R. B.; Yang, Y. J.; Yang, Z.; Phang, I. Y.; Ling, X. Y. Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels. Nanoscale 2018, 10, 575–581.
Tian, S.; Neumann, O.; McClain, M. J.; Yang, X.; Zhou, L. N.; Zhang, C.; Nordlander, P.; Halas, N. J. Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection. Nano Lett. 2017, 17, 5071–5077.
Dörfer, T.; Schmitt, M.; Popp, J. Deep-UV surface-enhanced Raman scattering. J. Raman Spectrosc. 2007, 38, 1379–1382.
Demirel, G.; Usta, H.; Yilmaz, M.; Celi, M.; Alidagi, H. A.; Buyukserin, F. Surface-enhanced Raman spectroscopy (SERS): An adventure from plasmonic metals to organic semiconductors as SERS platforms. J. Mater. Chem. C 2018, 6, 5314–5335.
Zhao, Y.; Zhang, Y. J.; Meng, J. H.; Chen, S.; Panneerselvam, R.; Li, C. Y.; Jamali, S. B.; Li, X.; Yang, Z. L.; Li, J. F. et al. A facile method for the synthesis of large-size Ag nanoparticles as efficient SERS substrates. J. Raman Spectrosc. 2016, 47, 662–667.
Sivapalan, S. T.; DeVetter, B. M.; Yang, T. K.; Van Dijk, T.; Schulmerich, M. V.; Carney, P. S.; Bhargava, R.; Murphy, C. J. Off-resonance surface-enhanced Raman spectroscopy from gold nanorod suspensions as a function of aspect ratio: Not what we thought. ACS Nano 2013, 7, 2099–2105.
Liu, L.; Wu, Y. Z.; Yin, N. Q.; Zhang, H. M.; Ma, H. Silver nanocubes with high SERS performance. J. Quant. Spectrosc. Radiat. Transfer 2020, 240, 106682.
Senthil Kumar, P.; Pastoriza-Santos, I.; Rodríguez-González, B.; Javier García de Abajo, F.; Liz-Marzán, L. M. High-yield synthesis and optical response of gold nanostars. Nanotechnology 2008, 19, 015606.
Fan, M. K.; Lai, F. J.; Chou, H. L.; Lu, W. T.; Hwang, B. J.; Brolo, A. G. Surface-enhanced Raman scattering (SERS) from Au:Ag bimetallic nanoparticles: The effect of the molecular probe. Chem. Sci. 2013, 4, 509–515.
Borah, R.; Verbruggen, S. W. Silver-gold bimetallic alloy versus core-shell nanoparticles: Implications for plasmonic enhancement and photothermal applications. J. Phys. Chem. C 2020, 124, 12081–12094.
Li, S. Y.; Chen, J. J.; Xu, W. B.; Sun, B.; Wu, J. C.; Chen, Q.; Liang, P. Highly homogeneous bimetallic core-shell Au@Ag nanoparticles with embedded internal standard fabrication using a microreactor for reliable quantitative SERS detection. Mater. Chem. Front. 2023, 7, 1100–1109.
Park, S.; Yang, P. X.; Corredor, P.; Weaver, M. J. Transition metal-coated nanoparticle films: Vibrational characterization with surface-enhanced Raman scattering. J. Am. Chem. Soc. 2002, 124, 2428–2429.
Leung, L. W. H.; Weaver, M. J. Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: Carbon monoxide adsorption and electrooxidation on platinum- and palladium-coated gold electrodes. J. Am. Chem. Soc. 1987, 109, 5113–5119.
Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 2007, 3514–3534.
Lin, S. C.; Ze, H.; Zhang, X. G.; Zhang, Y. J.; Song, J.; Zhang, H. M.; Zhong, H. L.; Yang, Z. L.; Yang, C. Y.; Li, J. F. et al. Direct and simultaneous identification of multiple mitochondrial reactive oxygen species in living cells using a SERS borrowing strategy. Angew. Chem., Int. Ed. 2022, 61, e202203511.
Ze, H.; Chen, X.; Wang, X. T.; Wang, Y. H.; Chen, Q. Q.; Lin, J. S.; Zhang, Y. J.; Zhang, X. G.; Tian, Z. Q.; Li, J. F. Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy. J. Am. Chem. Soc. 2021, 143, 1318–1322.
Liu, Y.; Lyu, N.; Rajendran, V. K.; Piper, J.; Rodger, A.; Wang, Y. L. Sensitive and direct DNA mutation detection by surface-enhanced Raman spectroscopy using rational designed and tunable plasmonic nanostructures. Anal. Chem. 2020, 92, 5708–5716.
Li, A. R.; Li, S. Z. Large-volume hot spots in gold spiky nanoparticle dimers for high-performance surface-enhanced spectroscopy. Nanoscale 2014, 6, 12921–12928.
Srivastava, S. K.; Li, A. R.; Li, S. Z.; Abdulhalim, I. Optimal interparticle gap for ultrahigh field enhancement by LSP excitation via ESPs and confirmation using SERS. J. Phys. Chem. C 2016, 120, 28735–28742.
Li, A. R.; Srivastava, S. K.; Abdulhalim, I.; Li, S. Z. Engineering the hot spots in squared arrays of gold nanoparticles on a silver film. Nanoscale 2016, 8, 15658–15664.
Hao, E. C.; Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 2004, 120, 357–366.
Zhang, Z. L.; Yang, P. F.; Xu, H. X.; Zheng, H. R. Surface enhanced fluorescence and Raman scattering by gold nanoparticle dimers and trimers. J. Appl. Phys. 2013, 113, 033102.
Camden, J. P.; Dieringer, J. A.; Wang, Y. M.; Masiello, D. J.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 2008, 130, 12616–12617.
Wang, D.; Shi, F. X.; Jose, J.; Hu, Y. F.; Zhang, C. C.; Zhu, A. N.; Grzeschik, R.; Schlücker, S.; Xie, W. In situ monitoring of palladium-catalyzed chemical reactions by nanogap-enhanced Raman scattering using single Pd cube dimers. J. Am. Chem. Soc. 2022, 144, 5003–5009.
Tapio, K.; Mostafa, A.; Kanehira, Y.; Suma, A.; Dutta, A.; Bald, I. A versatile DNA origami-based plasmonic nanoantenna for label-free single-molecule surface-enhanced Raman spectroscopy. ACS Nano 2021, 15, 7065–7077.
Severoni, E.; Maniappan, S.; Liz-Marzán, L. M.; Kumar, J.; de Abajo, F. J. G.; Galantini, L. Plasmon-enhanced optical chirality through hotspot formation in surfactant-directed self-assembly of gold nanorods. ACS Nano 2020, 14, 16712–16722.
Wu, Y. X.; Yu, Q.; Joung, Y.; Jeon, C. S.; Lee, S.; Pyun, S. H.; Joo, S. W.; Chen, L. X.; Choo, J. Highly uniform self-assembly of gold nanoparticles by butanol-induced dehydration and its SERS applications in SARS-CoV-2 detection. Anal. Chem. 2023, 95, 12710–12718.
Zhang, M. L.; Pan, J. L.; Xu, X. Y.; Fu, G. G.; Zhang, L.; Sun, P.; Yan, X.; Liu, F. M.; Wang, C. G.; Liu, X. M. et al. Gold-trisoctahedra-coated capillary-based SERS platform for microsampling and sensitive detection of trace fentanyl. Anal. Chem. 2022, 94, 4850–4858.
Lin, S.; Hasi, W.; Lin, X.; Han, S. O. G. W.; Xiang, T.; Liang, S.; Wang, L. Lab-on-capillary platform for on-site quantitative SERS analysis of surface contaminants based on Au@4-MBA@Ag core-shell nanorods. ACS Sens. 2020, 5, 1465–1473.
Chen, L. L.; Hu, C. Y.; Dong, Y. Y.; Li, Y. P.; Shi, Q. Q.; Liu, G. Y.; Long, R.; Xiong, Y. J. Tunable layered gold nanochips for high sensitivity and uniformity in SERS detection. J. Phys. Chem. C 2023, 127, 8167–8174.
Liu, J. Q.; Chen, C. N.; Lu, J. X.; Wang, Y. L.; Zhai, J. T.; Zhao, H. K.; Lu, N. Template-confined assembly of Ag nanocubes: An approach to fabricate SERS substrate with good performance. Talanta 2024, 269, 125442.
Kim, W. H.; Lee, J. U.; Jeon, M. J.; Park, K. H.; Sim, S. J. Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer. Biosens. Bioelectron. 2022, 205, 114116.
Dinish, U. S.; Yaw, F. C.; Agarwal, A.; Olivo, M. Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing. Biosens. Bioelectron. 2011, 26, 1987–1992.
Ingram, W. M.; Han, C. Q.; Zhang, Q. J.; Zhao, Y. P. Optimization of Ag-coated polystyrene nanosphere substrates for quantitative surface-enhanced Raman spectroscopy analysis. J. Phys. Chem. C 2015, 119, 27639–27648.
Lin, W. C.; Liao, L. S.; Chen, Y. H.; Chang, H. C.; Tsai, D. P.; Chiang, H. P. Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate. Plasmonics 2011, 6, 201–206.
Jibin, K.; Babu V, R.; Jayasree, R. S. Graphene-gold nanohybrid-based surface-enhanced Raman scattering platform on a portable easy-to-use centrifugal prototype for liquid biopsy detection of circulating breast cancer cells. ACS Sustainable Chem. Eng. 2021, 9, 15496–15505.
Han, X. X.; Ji, W.; Zhao, B.; Ozaki, Y. Semiconductor-enhanced Raman scattering: Active nanomaterials and applications. Nanoscale 2017, 9, 4847–4861.
Meng, X. Y.; Qiu, L.; Xi, G. C.; Wang, X. T.; Guo, L. Smart design of high-performance surface-enhanced Raman scattering substrates. SmartMat 2021, 2, 466–487.
Deneme, I.; Liman, G.; Can, A.; Demirel, G.; Usta, H. Enabling three-dimensional porous architectures via carbonyl functionalization and molecular-specific organic-SERS platforms. Nat. Commun. 2021, 12, 6119.
Chen, Z. Y.; Su, L. J.; Ma, X. H.; Duan, Z. H.; Xiong, Y. H. A mixed valence state Mo-based metal-organic framework from photoactivation as a surface-enhanced Raman scattering substrate. New J. Chem. 2021, 45, 5121–5126.
Sun, H. Z.; Song, G.; Gong, W. B.; Lu, W. B.; Cong, S.; Zhao, Z. G. Stabilizing photo-induced vacancy defects in MOF matrix for high-performance SERS detection. Nano Res. 2022, 15, 5347–5354.
Wang, Y. F.; Sun, Z. H.; Hu, H. L.; Jing, S. Y.; Zhao, B.; Xu, W. Q.; Zhao, C.; Lombardi, J. R. Raman scattering study of molecules adsorbed on ZnS nanocrystals. J. Raman Spectrosc. 2007, 38, 34–38.
Maznichenko, D.; Venkatakrishnan, K.; Tan, B. Stimulating multiple SERS mechanisms by a nanofibrous three-dimensional network structure of titanium dioxide (TiO2). J. Phys. Chem. C 2013, 117, 578–583.
Cong, S.; Yuan, Y. Y.; Chen, Z. G.; Hou, J. Y.; Yang, M.; Su, Y. L.; Zhang, Y. Y.; Li, L.; Li, Q. W.; Geng, F. X. et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun. 2015, 6, 7800.
Lombardi, J. R.; Birke, R. L. Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130.
Lippitsch, M. E. Ground-state charge transfer as a mechanism for surface-enhanced Raman scattering. Phys. Rev. B 1984, 29, 3101–3110.
Jensen, L.; Aikens, C. M.; Schatz, G. C. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev. 2008, 37, 1061–1073.
Lombardi, J. R.; Birke, R. L.; Lu, T. H.; Xu, J. Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-teller contributions. J. Chem. Phys. 1986, 84, 4174–4180.
Li, A. R.; Lin, J.; Huang, Z. N.; Wang, X. T.; Guo, L. Surface-enhanced Raman spectroscopy on amorphous semiconducting rhodium sulfide microbowl substrates. iScience 2018, 10, 1–10.
Lin, J.; Ren, W. Z.; Li, A. R.; Yao, C. Y.; Chen, T. X.; Ma, X. H.; Wang, X. T.; Wu, A. G. Crystal-amorphous core-shell structure synergistically enabling TiO2 nanoparticles’ remarkable SERS sensitivity for cancer cell imaging. ACS Appl. Mater. Interfaces 2020, 12, 4204–4211.
Li, A. R.; Yu, J.; Lin, J.; Chen, M.; Wang, X. T.; Guo, L. Increased O 2p state density enabling significant photoinduced charge transfer for surface-enhanced Raman scattering of amorphous Zn(OH)2. J. Phys. Chem. Lett. 2020, 11, 1859–1866.
Wu, H.; Wang, H.; Li, G. H. Metal oxide semiconductor SERS-active substrates by defect engineering. Analyst 2017, 142, 326–335.
Lan, L. L.; Fan, X. C.; Zhao, C. Y.; Gao, J.; Qu, Z. W.; Song, W. Z.; Yao, H. R.; Li, M. Z.; Qiu, T. Two-dimensional MBenes with ordered metal vacancies for surface-enhanced Raman scattering. Nanoscale 2023, 15, 2779–2787.
Zheng, Z. H.; Cong, S.; Gong, W. B.; Xuan, J. N.; Li, G. H.; Lu, W. B.; Geng, F. X.; Zhao, Z. G. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat. Commun. 2017, 8, 1993.
Jiang, L. L.; Hu, Y. L.; Zhang, H. N.; Luo, X. L.; Yuan, R.; Yang, X. Charge-transfer resonance and surface defect-dominated WO3 hollow microspheres as SERS substrates for the miRNA 155 assay. Anal. Chem. 2022, 94, 6967–6975.
Hu, Y.; Li, X. B.; Wang, W. W.; Deng, F.; Han, L.; Gao, X. M.; Feng, Z. J.; Chen, Z.; Huang, J. T.; Zeng, F. Y. et al. Bi and S Co-doping g-C3N4 to enhance internal electric field for robust photocatalytic degradation and H2 production. Chin. J. Struct. Chem. 2022, 41, 2206069–2206078.
Wen, S. S.; Mu, M.; Xie, Q. H.; Zhao, B.; Song, W. Investigation of sulfur doping in Mn–Co oxide nanotubes on surface-enhanced Raman scattering properties. Anal. Chem. 2022, 94, 5987–5995.
Yang, L. L.; Peng, Y. S.; Yang, Y.; Liu, J. J.; Huang, H. L.; Yu, B. H.; Zhao, J. M.; Lu, Y. L.; Huang, Z. R.; Li, Z. Y. et al. A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect. Adv. Sci. 2019, 6, 1900310.
Wang, Y. N.; Zhang, M.; Ma, H.; Su, H. Y.; Li, A. S.; Ruan, W. D.; Zhao, B. Surface plasmon resonance from gallium-doped zinc oxide nanoparticles and their electromagnetic enhancement contribution to surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2021, 13, 35038–35045.
Cheng, H. F.; Wen, M. C.; Ma, X. C.; Kuwahara, Y.; Mori, K.; Dai, Y.; Huang, B. B.; Yamashita, H. Hydrogen doped metal oxide semiconductors with exceptional and tunable localized surface plasmon resonances. J. Am. Chem. Soc. 2016, 138, 9316–9324.
Cao, Y.; Gou, H. Q.; Zhu, P. F.; Jin, Z. L. Ingenious design of CoAl-LDH p-n heterojunction based on CuI as holes receptor for photocatalytic hydrogen evolution. Chin. J. Struct. Chem. 2022, 41, 2206079–2206085.
Fan, H. N.; Luo, W. B.; Dou, S. X.; Zheng, Z. J. Advanced two-dimensional materials toward polysulfides regulation of metal-sulfur batteries. SmartMat 2023, 4, e1186.
Yu, D. X.; Xu, L.; Zhang, H. Z.; Li, J.; Wang, W. E.; Yang, L. B.; Jiang, X.; Zhao, B. A new semiconductor-based SERS substrate with enhanced charge collection and improved carrier separation: CuO/TiO2 p-n heterojunction. Chin. Chem. Lett. 2023, 34, 107771.
Zhang, H. Z.; Tang, Y. M.; Wang, W. E.; Yu, D. X.; Yang, L. B.; Jiang, X.; Song, W.; Zhao, B. A new semiconductor heterojunction SERS substrate for ultra-sensitive detection of antibiotic residues in egg. Food Chem. 2024, 431, 137163.
Tan, Y.; Ma, L. N.; Gao, Z. B.; Chen, M.; Chen, F. Two-dimensional heterostructure as a platform for surface-enhanced Raman scattering. Nano Lett. 2017, 17, 2621–2626.
Ghopry, S. A.; Alamri, M. A.; Goul, R.; Sakidja, R.; Wu, J. Z. Extraordinary sensitivity of surface-enhanced Raman spectroscopy of molecules on MoS2 (WS2) nanodomes/graphene van der Waals heterostructure substrates. Adv. Opt. Mater. 2019, 7, 1801249.
Yin, Y.; Miao, P.; Zhang, Y. M.; Han, J. C.; Zhang, X. H.; Gong, Y.; Gu, L.; Xu, C. Y.; Yao, T.; Xu, P. et al. Significantly increased Raman enhancement on MoX2 (X = S, Se) monolayers upon phase transition. Adv. Funct. Mater. 2017, 27, 1606694.
Guan, H. M.; Yi, W. C.; Li, T.; Li, Y. H.; Li, J. F.; Bai, H.; Xi, G. C. Low temperature synthesis of plasmonic molybdenum nitride nanosheets for surface enhanced Raman scattering. Nat. Commun. 2020, 11, 3889.
Ge, Y. C.; Wang, F.; Yang, Y.; Xu, Y.; Ye, Y.; Cai, Y.; Zhang, Q. W.; Cai, S. Y.; Jiang, D. F.; Liu, X. H. et al. Atomically thin TaSe2 film as a high-performance substrate for surface-enhanced Raman scattering. Small 2022, 18, 2107027.
Song, G.; Sun, H. Z.; Chen, J.; Chen, Z. G.; Liu, B. Y.; Liu, Z. H.; Cong, S.; Zhao, Z. G. Quantum effects enter semiconductor-based SERS: Multiresonant MoO3· xH2O quantum dots enabling direct, sensitive SERS detection of small inorganic molecules. Anal. Chem. 2022, 94, 5048–5054.
Wang, X. T.; Shi, W. X.; Jin, Z.; Huang, W. F.; Lin, J.; Ma, G. S.; Li, S. Z.; Guo, L. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem., Int. Ed. 2017, 56, 9851–9855.
Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Can graphene be used as a substrate for Raman enhancement. Nano Lett. 2010, 10, 553–561.
Fu, J. H.; Zhong, Z.; Xie, D.; Guo, Y. J.; Kong, D. X.; Zhao, Z. X.; Zhao, Z. X.; Li, M. SERS-Active MIL-100(Fe) sensory array for ultrasensitive and multiplex detection of VOCs. Angew. Chem., Int. Ed. 2020, 59, 20489–20498.
Xu, J. T.; Cheng, C.; Shang, S. W.; Gao, W.; Zeng, P.; Jiang, S. X. Flexible, reusable SERS substrate derived from ZIF-67 by adjusting LUMO and HOMO and its application in identification of bacteria. ACS Appl. Mater. Interfaces 2020, 12, 49452–49463.
Lin, J.; Yu, J.; Akakuru, O. U.; Wang, X. T.; Yuan, B.; Chen, T. X.; Guo, L.; Wu, A. G. Low temperature-boosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets. Chem. Sci. 2020, 11, 9414–9420.
Meng, X. Y.; Yu, J.; Wu, J. J.; Wang, Y. N.; Song, X. Y.; Xu, Z. Y.; Li, A. R.; Qiu, L.; Lin, J.; Wang, X. T. Significant surface-enhanced Raman scattering effect of Ag-loaded iron hydroxide enabled by coordination effect between Ag and hydroxyl group. Inorg. Chem. Front. 2023, 10, 3648–3655.
Zhang, X. K.; Lei, Z. H.; Pan, Z. H.; Hu, J. Q.; Tao, L. L.; Zheng, Z. Q.; Feng, X.; Xue, J. C.; Tao, L.; Zhao, Y. A general approach to hybrid platform of Au nanoparticles on monolayer semiconductor for ultrasensitive Raman enhancement of 2D materials and molecule detection. J. Alloys Compd. 2023, 938, 168468.
Zhang, X. Y.; Han, D. L.; Pang, Z. Y.; Sun, Y. S.; Wang, Y. X.; Zhang, Y. J.; Yang, J. H.; Chen, L. Charge transfer in an ordered Ag/Cu2S/4-MBA system based on surface-enhanced Raman scattering. J. Phys. Chem. C 2018, 122, 5599–5605.
Wang, C.; Guo, X. F.; Fu, Q. TiO2 Thickness-dependent charge transfer in an ordered Ag/TiO2/Ni nanopillar arrays based on surface-enhanced Raman scattering. Materials 2022, 15, 3716.
Yang, F. Y.; Gong, Y. Y.; Zhou, M.; He, X. F.; Niu, L. Y.; Li, C.; Liu, X. J. Spontaneous synthesis of Ag nanoparticles decorated ZnAl layered double hydroxides for synergistically improved SERS activity. Appl. Surf. Sci. 2023, 612, 155701.
Ben-Jaber, S.; Peveler, W. J.; Quesada-Cabrera, R.; Cortés, E.; Sotelo-Vazquez, C.; Abdul-Karim, N.; Maier, S. A.; Parkin, I. P. Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nat. Commun. 2016, 7, 12189.
Man, T. T.; Lai, W.; Xiao, M. S.; Wang, X. W.; Chandrasekaran, A. R.; Pei, H.; Li, L. A versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy. Biosens. Bioelectron. 2020, 147, 111742.
Guselnikova, O.; Lim, H.; Na, J.; Eguchi, M.; Kim, H. J.; Elashnikov, R.; Postnikov, P.; Svorcik, V.; Semyonov, O.; Miliutina, E. et al. Enantioselective SERS sensing of pseudoephedrine in blood plasma biomatrix by hierarchical mesoporous Au films coated with a homochiral MOF. Biosens Bioelectron. 2021, 180, 113109.
Chen, X. Y.; Cui, A. R.; He, M. Y.; Yan, M.; Zhang, X. C.; Ruan, J.; Yang, S. K. Slippery Au nanosphere monolayers with analyte enrichment and SERS enhancement functions. Nano Lett. 2023, 23, 6736–6743.
Li, Y. Y.; Lin, C. L.; Peng, Y. S.; He, J.; Yang, Y. High-sensitivity and point-of-care detection of SARS-CoV-2 from nasal and throat swabs by magnetic SERS biosensor. Sens. Actuators B: Chem. 2022, 365, 131974.
Hu, W. Y.; Xia, L.; Hu, Y. F.; Li, G. K. Fe3O4–WO3– X @AuNPs for magnetic separation, enrichment and surface-enhanced Raman scattering analysis all-in-one of albendazole and streptomycin in meat samples. Sens. Actuators B: Chem. 2024, 402, 135131.
Wang, Y.; Liu, Y. H.; Li, Y.; Xu, D. D.; Pan, X.; Chen, Y. D.; Zhou, D. K.; Wang, B.; Feng, H. H.; Ma, X. Magnetic nanomotor-based maneuverable SERS probe. Research 2020, 2020, 7962024.
Liu, S. M.; Xu, D. D.; Chen, J. L.; Peng, N.; Ma, T.; Liang, F. Nanozymatic magnetic nanomotors for enhancing photothermal therapy and targeting intracellular SERS sensing. Nanoscale 2023, 15, 12944–12953.
Hanauske, A. R.; Arteaga, C. L.; Clark, G. M.; Buchok, J.; Marshall, M.; Hazarika, P.; Pardue, R. L.; Von Hoff, D. D. Determination of transforming growth factor activity in effusions from cancer patients. 3.0.CO;2-J">Cancer 1988, 61, 1832–1837.
Lim, S.; Janzer, A.; Becker, A.; Zimmer, A.; Schüle, R.; Buettner, R.; Kirfel, J. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis 2010, 31, 512–520.
Kim, S. E.; Kim, Y. J.; Song, S. G.; Lee, K. N.; Seong, W. K. A simple electrochemical immunosensor platform for detection of Apolipoprotein A1 (Apo-A1) as a bladder cancer biomarker in urine. Sens. Actuators B: Chem. 2019, 278, 103–109.
Zhu, Y. D.; Peng, J.; Jiang, L. P.; Zhu, J. J. Fluorescent immunosensor based on CuS nanoparticles for sensitive detection of cancer biomarker. Analyst 2014, 139, 649–655.
Aroca, R. F.; Ross, D. J.; Domingo, C. Surface-enhanced infrared spectroscopy. Appl. Spectrosc. 2004, 58, 324A–338A.
Doering, W. E.; Nie, S. M. Spectroscopic tags using dye embedded nanoparticles and surface-enhanced Raman scattering. Anal. Chem. 2003, 75, 6171–6176.
Yuan, K. S.; Jiang, Z. J.; Jurado-Sánchez, B.; Escarpa, A. Nano/micromotors for diagnosis and therapy of cancer and infectious diseases. Chem.-Eur. J. 2020, 26, 2309–2326.
Tahir, M. A.; Dina, N. E.; Cheng, H. Y.; Valev, V. K.; Zhang, L. W. Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. Nanoscale 2021, 13, 11593–11634.
Lin, J.; Ma, X. H.; Li, A. R.; Akakuru, O. U.; Pan, C. S.; He, M.; Yao, C. Y.; Ren, W. Z.; Li, Y. Y.; Zhang, D. H. et al. Multiple valence states of Fe boosting SERS activity of Fe3O4 nanoparticles and enabling effective SERS-MRI bimodal cancer imaging. Fundam. Res. 2024, 4, 858–867.
Lin, J.; Zhang, D. H.; Yu, J.; Pan, T.; Wu, X. X.; Chen, T. X.; Gao, C. Y.; Chen, C.; Wang, X. T.; Wu, A. G. Amorphous nitrogen-doped carbon nanocages with excellent SERS sensitivity and stability for accurate identification of tumor cells. Anal. Chem. 2023, 95, 4671–4681.
Liu, Y.; Zhou, H. B.; Hu, Z. W.; Yu, G. X.; Yang, D. T.; Zhao, J. S. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosens. Bioelectron. 2017, 94, 131–140.
Pérez-Jiménez, A. I.; Lyu, D. Y.; Lu, Z. X.; Liu, G. K.; Ren, B. Surface-enhanced Raman spectroscopy: Benefits, trade-offs and future developments. Chem. Sci. 2020, 11, 4563–4577.
Chen, Y. P.; Chen, G.; Feng, S. Y.; Pan, J. J.; Zheng, X. W.; Su, Y.; Chen, Y.; Huang, Z. F.; Lin, X. Q.; Lan, F. H. et al. Label-free serum ribonucleic acid analysis for colorectal cancer detection by surface-enhanced Raman spectroscopy and multivariate analysis. J. Biomed. Opt. 2012, 17, 067003.
Li, Y. E.; Wang, Z.; Mu, X. J.; Ma, A. N.; Guo, S. Raman tags: Novel optical probes for intracellular sensing and imaging. Biotechnol. Adv. 2017, 35, 168–177.
Palermo, G.; Rippa, M.; Conti, Y.; Vestri, A.; Castagna, R.; Fusco, G.; Suffredini, E.; Zhou, J.; Zyss, J.; De Luca, A. et al. Plasmonic metasurfaces based on pyramidal nanoholes for high-efficiency SERS biosensing. ACS Appl. Mater. Interfaces 2021, 13, 43715–43725.
Fan, Z.; Kanchanapally, R.; Ray, P. C. Hybrid graphene oxide based ultrasensitive SERS probe for label-free biosensing. J. Phys. Chem. Lett. 2013, 4, 3813–3818.
Phyo, J. B.; Woo, A.; Yu, H. J.; Lim, K.; Cho, B. H.; Jung, H. S.; Lee, M. Y. Label-free SERS analysis of urine using a 3D-stacked AgNW-glass fiber filter sensor for the diagnosis of pancreatic cancer and prostate cancer. Anal. Chem. 2021, 93, 3778–3785.
Kim, S.; Ansah, I. B.; Park, J. S.; Dang, H. J.; Choi, N.; Lee, W. C.; Lee, S. H.; Jung, H. S.; Kim, D. H.; Yoo, S. M. et al. Early and direct detection of bacterial signaling molecules through one-pot Au electrodeposition onto paper-based 3D SERS substrates. Sens. Actuators B: Chem. 2022, 358, 131504.
You, R. Y.; Li, J.; Wang, H. N.; Wu, Y. L.; Weng, J. Z.; Lu, Y. D. High-performance SERS biosensor based on in- situ reduction of silver nanoparticles in an ultra-filtration centrifuge device for label-free detection of colon cancer in serum. J. Membr. Sci. 2023, 678, 121688.
Guo, Y.; Zhang, R. Y.; You, H. J.; Fang, J. X. Effective enrichment of trace exosomes for the label-free SERS detection via low-cost thermophoretic profiling. Biosens. Bioelectron. 2024, 253, 116164.
Jaworska, A.; Wojcik, T.; Malek, K.; Kwolek, U.; Kepczynski, M.; Ansary, A. A.; Chlopicki, S.; Baranska, M. Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells. Microchim. Acta 2015, 182, 119–127.
Yu, Q.; Wang, Y. Q.; Mei, R. C.; Yin, Y. C.; You, J. M.; Chen, L. X. Polystyrene encapsulated SERS tags as promising standard tools: Simple and universal in synthesis; highly sensitive and ultrastable for bioimaging. Anal. Chem. 2019, 91, 5270–5277.
Yang, Y. T.; Hsu, I. L.; Cheng, T. Y.; Wu, W. J.; Lee, C. W.; Li, T. J.; Cheung, C. I.; Chin, Y. C.; Chen, H. C.; Chiu, Y. C. et al. Off-resonance SERS nanoprobe-targeted screen of biomarkers for antigens recognition of bladder normal and aggressive cancer cells. Anal. Chem. 2019, 91, 8213–8220.
Song, D.; Yang, R.; Fang, S. Y.; Liu, Y. P.; Long, F.; Zhu, A. N. SERS based aptasensor for ochratoxin A by combining Fe3O4@Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with multiple signal enhancement. Microchim. Acta 2018, 185, 491.
Simon, T.; Potara, M.; Gabudean, A. M.; Licarete, E.; Banciu, M.; Astilean, S. Designing theranostic agents based on pluronic stabilized gold nanoaggregates loaded with methylene blue for multimodal cell imaging and enhanced photodynamic therapy. ACS Appl. Mater. Interfaces 2015, 7, 16191–16201.
Zhou, W.; Li, Q.; Liu, H. Q.; Yang, J.; Liu, D. B. Building Electromagnetic hot spots in living cells via target-triggered nanoparticle dimerization. ACS Nano 2017, 11, 3532–3541.
Di, H. X.; Liu, H. Q.; Li, M. M.; Li, J.; Liu, D. B. High-precision profiling of sialic acid expression in cancer cells and tissues using background-free surface-enhanced Raman scattering tags. Anal. Chem. 2017, 89, 5874–5881.
Yin, Y. M.; Li, Q.; Ma, S. S.; Liu, H. Q.; Dong, B.; Yang, J.; Liu, D. B. Prussian blue as a highly sensitive and background-free resonant Raman reporter. Anal. Chem. 2017, 89, 1551–1557.
Pang, Y. F.; Wang, C. W.; Xiao, R.; Sun, Z. W. Dual-selective and dual-enhanced SERS nanoprobes strategy for circulating hepatocellular carcinoma cells detection. Chem.-Eur. J. 2018, 24, 7060–7067.
Zou, Y. X.; Huang, S. Q.; Liao, Y. X.; Zhu, X. P.; Chen, Y. Q.; Chen, L.; Liu, F.; Hu, X. X.; Tu, H. J.; Zhang, L. et al. Isotopic graphene-isolated-Au-nanocrystals with cellular Raman-silent signals for cancer cell pattern recognition. Chem. Sci. 2018, 9, 2842–2849.
Pang, Y. F.; Wan, N.; Shi, L. L.; Wang, C. W.; Sun, Z. W.; Xiao, R.; Wang, S. Q. Dual-recognition surface-enhanced Raman scattering (SERS) biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au. Anal. Chim. Acta 2019, 1077, 288–296.
Tang, R.; Hu, R.; Jiang, X. H.; Lu, F. LHRH-targeting surface-enhanced Raman scattering tags for the rapid detection of circulating tumor cells. Sens. Actuators B: Chem. 2019, 284, 468–474.
Zhang, Q. N.; Li, J. S.; Tang, P.; Lu, X. X.; Tian, J. D.; Zhong, L. Y. Dynamic imaging of transferrin receptor molecules on single live cell with bridge gaps-enhanced Raman tags. Nanomaterials 2019, 9, 1373.
Gao, X.; Yin, Y. L.; Wu, H. T.; Hao, Z.; Li, J. J.; Wang, S.; Liu, Y. Q. Integrated SERS platform for reliable detection and photothermal elimination of bacteria in whole blood samples. Anal. Chem. 2021, 93, 1569–1577.
Liang, X.; Zhang, P.; Ma, M. H.; Yang, T.; Zhao, X. W.; Zhang, R.; Jing, M. X.; Song, R. D.; Wang, L.; Fan, J. H. Multiplex ratiometric gold nanoprobes based on surface-enhanced Raman scattering enable accurate molecular detection and imaging of bladder cancer. Nano Res. 2022, 15, 3487–3495.
Han, S. R.; Fan, M.; Xu, G. C.; Liu, W. T.; Chen, J. B.; Lu, Y. D.; Feng, S. Y.; You, R. Y. Gold-nanostar-based surface-enhanced Raman scattering substrates for gastric carcinoma detection. ACS Appl. Nano Mater. 2022, 5, 12607–12615.
Li, Y. Z.; Lu, C.; Zhou, S. S.; Fauconnier, M. L.; Gao, F.; Fan, B.; Lin, J. H.; Wang, F. Z.; Zheng, J. K. Sensitive and simultaneous detection of different pathogens by surface-enhanced Raman scattering based on aptamer and Raman reporter co-mediated gold tags. Sens. Actuators B: Chem. 2020, 317, 128182.
You, S. M.; Luo, K.; Jung, J. Y.; Jeong, K. B.; Lee, E. S.; Oh, M. H.; Kim, Y. R. Gold nanoparticle-coated starch magnetic beads for the separation, concentration, and SERS-based detection of E. coli O157:H7. ACS Appl. Mater. Interfaces 2020, 12, 18292–18300.
Wu, J. M.; Zhou, X.; Li, P.; Lin, X. L.; Wang, J. H.; Hu, Z. W.; Zhang, P. C.; Chen, D.; Cai, H. H.; Niessner, R. et al. Ultrasensitive and simultaneous SERS detection of multiplex MicroRNA using fractal gold nanotags for early diagnosis and prognosis of hepatocellular carcinoma. Anal. Chem. 2021, 93, 8799–8809.
Zheng, S.; Xiao, J. R.; Zhang, J.; Sun, Q. X.; Liu, D. B.; Liu, Y. Q.; Gao, X. Python-assisted detection and photothermal inactivation of Salmonella typhimurium and Staphylococcus aureus on a background-free SERS chip. Biosens. Bioelectron. 2024, 247, 115913.
Shen, W. Z.; Wang, C. W.; Yang, X. S.; Wang, C. G.; Zhou, Z. H.; Liu, X. X.; Xiao, R.; Gu, B.; Wang, S. Q. Synthesis of raspberry-like nanogapped Fe3O4@Au nanocomposites for SERS-based lateral flow detection of multiple tumor biomarkers. J. Mater. Chem. C 2020, 8, 12854–12864.
Yang, Y. J.; Xu, B. B.; Murray, J.; Haverstick, J.; Chen, X. Y.; Tripp, R. A.; Zhao, Y. P. Rapid and quantitative detection of respiratory viruses using surface-enhanced Raman spectroscopy and machine learning. Biosens. Bioelectron. 2022, 217, 114721.
Zhang, T.; Xu, Z. M.; Liu, X.; Liu, L.; Jiang, S.; Zhang, Z.; Li, Y.; Pan, S. Activated silver nanoparticle-based platform for specific capture of Porphyromonas gingivalis in human saliva. Sens. Actuators B: Chem. 2024, 403, 135171.
Linh, V. T. N.; Kim, H.; Lee, M. Y.; Mun, J.; Kim, Y.; Jeong, B. H.; Park, S. G.; Kim, D. H.; Rho, J.; Jung, H. S. 3D plasmonic hexaplex paper sensor for label-free human saliva sensing and machine learning-assisted early-stage lung cancer screening. Biosens. Bioelectron. 2024, 244, 115779.
Pu, H. B.; Xiao, W.; Sun, D. W. SERS-microfluidic systems: A potential platform for rapid analysis of food contaminants. Trends Food Sci. Technol. 2017, 70, 114–126.
Cao, X. W.; Ge, S. J.; Hua, W. W.; Zhou, X. Y.; Lu, W. B.; Gu, Y. Y.; Li, Z. Y.; Qian, Y. Y. A pump-free and high throughput microfluidic chip for highly sensitive SERS assay of gastric cancer related circulating tumor DNA via a cascade signal amplification strategy. J. Nanobiotechnol. 2022, 20, 271.
Czaplicka, M.; Niciński, K.; Nowicka, A.; Szymborski, T.; Chmielewska, I.; Trzcińska-Danielewicz, J.; Girstun, A.; Kamińska, A. Effect of varying expression of EpCAM on the efficiency of CTCs detection by SERS-based immunomagnetic optofluidic device. Cancers 2020, 12, 3315.
Dina, N. E.; Gherman, A. M. R.; Colniță, A.; Marconi, D.; Sârbu, C. Fuzzy characterization and classification of bacteria species detected at single-cell level by surface-enhanced Raman scattering. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2021, 247, 119149.
Wen, P.; Yang, F.; Zhao, H. X.; Xu, Y.; Li, S. B.; Chen, L. Novel digital SERS-microfluidic chip for rapid and accurate quantification of microorganisms. Anal. Chem. 2024, 96, 1454–1461.
650
Views
214
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).