AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (28.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Super-self-assembly extraction from natural herbs

Jiawei Xiang1,2,§Yuan Meng1,2,§Mingyuan Zhao1,2Zhongxian Li1Qiang Zhang3Ning Wang4Zhuo Ao1 ( )Dong Han1,2 ( )
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Hebei Key Lab of Nano-biotechnology, Hebei Key Lab of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
Guang’anmen Hospital of the China Academy of Chinese Medical Sciences, Beijing 100053, China

§ Jiawei Xiang and Yuan Meng contributed equally to this work.

Show Author Information

Graphical Abstract

A new assembly pattern has been discovered in herbal decoctions, through simply applying freezing or ion addition results in the formation of super-self-assemblies with diverse morphologies and forms. The process is eco-friendly, simple, universal, reproducible, and stable.

Abstract

Life systems are complex systems, and the self-assembly behaviour represents the transition from disorder to order and serves as a concrete indicator and starting point for understanding complex systems. Super-self-assembly behaviour was observed in the decoctions of various natural herbs, and this behaviour was characterized by multistep and multilevel assembly processes. The super-self-assemblies were multilevel particles resulting from inorganic–organic assembly, specifically observed as composite spheres, cubes, and tetragonal bipyramids. The preparation process was environmentally friendly and safe, and the resulting super-self-assemblies were regular in shape and rich in variety; this process has numerous possibilities for development and application in medicine and materials research.

Electronic Supplementary Material

Download File(s)
7094_ESM.pdf (1.6 MB)

References

[1]

Li, X. L.; Zhang, W. J.; Lu, J. W.; Huang, L. X.; Nan, D. F.; Webb, M. A.; Hillion, F.; Wang, L. J. Templated biomineralization on self-assembled protein nanofibers buried in calcium oxalate raphides of Musa spp. Chem. Mater. 2014, 26, 3862–3869.

[2]

Davila-Hernandez, F. A.; Jin, B.; Pyles, H.; Zhang, S.; Wang, Z. M.; Huddy, T. F.; Bera, A. K.; Kang, A.; Chen, C. L.; De Yoreo, J. J. et al. Directing polymorph specific calcium carbonate formation with de novo protein templates. Nat. Commun. 2023, 14, 8191.

[3]

Fan, Q. H.; Zheng, Y.; Wang, X. C.; Xie, R. P.; Ding, Y.; Wang, B. Y.; Yu, X. Y.; Lu, Y.; Liu, L. Y.; Li, Y. L. et al. Dynamically re-organized collagen fiber bundles transmit mechanical signals and induce strongly correlated cell migration and self-organization. Angew. Chem., Int. Ed. 2021, 60, 11858–11867.

[4]

Otter, L. M.; Eder, K.; Kilburn, M. R.; Yang, L.; O’Reilly, P.; Nowak, D. B.; Cairney, J. M.; Jacob, D. E. Growth dynamics and amorphous-to-crystalline phase transformation in natural nacre. Nat. Commun. 2023, 14, 2254.

[5]

Gordon, L. M.; Joester, D. Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth. Nature 2011, 469, 194–197.

[6]

Song, Q. T.; Li, Y.; Jin, Z. C.; Liu, H.; Creyer, M. N.; Yim, W.; Huang, Y. P.; Hu, X. B.; He, T. Y.; Li, Y. J. et al. Self-assembled homopolymeric spherulites from small molecules in solution. J. Am. Chem. Soc. 2023, 145, 25664–25672.

[7]

Cho, N. H.; Guerrero-Martínez , A.; Ma, J.; Bals, S.; Kotov, N. A.; Liz-Marzán , L. M.; Nam, K. T. Bioinspired chiral inorganic nanomaterials. Nat. Rev. Bioeng. 2023, 1, 88–106.

[8]

Jiang, W. F.; Qu, Z. B.; Kumar, P.; Vecchio, D.; Wang, Y. F.; Ma, Y.; Bahng, J. H.; Bernardino, K.; Gomes, W. R.; Colombari, F. M. et al. Emergence of complexity in hierarchically organized chiral particles. Science 2020, 368, 642–648.

[9]

Fu, H. L.; Huang, J. Y.; van der Tol, J. J. B.; Su, L.; Wang, Y. Y.; Dey, S.; Zijlstra, P.; Fytas, G.; Vantomme, G.; Dankers, P. Y. W. et al. Supramolecular polymers form tactoids through liquid–liquid phase separation. Nature 2024, 626, 1011–1018.

[10]

Li, T.; Wang, P. L.; Guo, W. B.; Huang, X. M.; Tian, X. H.; Wu, G. R.; Xu, B.; Li, F. F.; Yan, C.; Liang, X. J. et al. Natural berberine-based Chinese herb medicine assembled nanostructures with modified antibacterial application. ACS Nano 2019, 13, 6770–6781.

[11]

Yao, L.; Zhao, M. M.; Luo, Q. W.; Zhang, Y. C.; Liu, T. T.; Yang, Z.; Liao, M.; Tu, P. F.; Zeng, K. W. Carbon quantum dots-based nanozyme from coffee induces cancer cell ferroptosis to activate antitumor immunity. ACS Nano 2022, 16, 9228–9239.

[12]

Li, X. Y.; Liang, Z.; Du, J. C.; Wang, Z. Q.; Mei, S.; Li, Z. Q.; Zhao, Y.; Zhao, D. D.; Ma, Y. M.; Ye, J. et al. Herbal decoctosome is a novel form of medicine. Sci. China Life Sci. 2019, 62, 333–348.

[13]

Fan, J. M.; Yu, H.; Lu, X.; Xue, R.; Guan, J. W.; Xu, Y.; Qi, Y. Y.; He, L. Y.; Yu, W.; Abay, S. et al. Overlooked spherical nanoparticles exist in plant extracts: From mechanism to therapeutic applications. ACS Appl. Mater. Interfaces 2023, 15, 8854–8871.

[14]

Meldrum, F. C.; Cölfen, H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 2008, 108, 4332–4432.

[15]

Guo, X. H.; Luo, W. K.; Wu, L. Y.; Zhang, L. L.; Chen, Y. X.; Li, T.; Li, H. G.; Zhang, W.; Liu, Y. W.; Zheng, J. et al. Natural products from herbal medicine self-assemble into advanced bioactive materials. Adv. Sci. (Weinh.) 2024, 11, e2403388.

[16]

Tang, L. J.; Di, Z. H.; Zhang, J. F.; Yin, F. Y.; Li, L. L.; Zheng, L. Coordination-driven self-assembly of metallo-nanodrugs for local inflammation alleviation. Nano Res. 2023, 16, 13259–13266.

[17]

Liang, R. J.; Li, R.; Mo, W. D.; Zhang, X. Z.; Ye, J. C.; Xie, C.; Li, W. Y.; Peng, Z.; Gu, Y. Q.; Huang, Y. X. et al. Engineering biomimetic silk fibroin hydrogel scaffolds with “organic–inorganic assembly” strategy for rapid bone regeneration. Bioact. Mater. 2024, 40, 541–556.

[18]

Liu, C.; Du, W. C.; Zhang, L.; Wang, J. C. Natural synergy: Oleanolic acid-curcumin co-assembled nanoparticles combat osteoarthritis. Colloid Surf. B 2025, 245, 114286.

[19]

Johnson, G.; Yang, M. Y.; Liu, C.; Zhou, H.; Zuo, X. B.; Dickie, D. A.; Wang, S. H.; Gao, W. P.; Anaclet, B.; Perras, F. A. et al. Nanocluster superstructures assembled via surface ligand switching at high temperature. Nat. Synth. 2023, 2, 828–837.

[20]

Lv, J. W.; Gao, X. Q.; Han, B.; Zhu, Y. F.; Hou, K.; Tang, Z. Y. Self-assembled inorganic chiral superstructures. Nat. Rev. Chem. 2022, 6, 125–145.

[21]

Tan, C. X.; Wang, Y. L. Self-assembly of Ophiopogonis polysaccharide-iron(III) complex in aqueous solution and solid state. J. Chin. Pharm. Sci. 2019, 28, 665–672.

[22]

Sun, Q. M.; Shi, X. L.; Feng, J. T.; Zhang, Q.; Ao, Z.; Ji, Y. L.; Wu, X. C.; Liu, D. S.; Han, D. Cytotoxicity and cellular responses of gold nanorods to smooth muscle cells dependent on surface chemistry coupled action. Small 2018, 14, 1803715.

[23]

Hu, N.; Shi, X. L.; Zhang, Q.; Liu, W. T.; Zhu, Y. T.; Wang, Y. Q.; Hou, Y.; Ji, Y. L.; Cao, Y. P.; Zeng, Q. et al. Special interstitial route can transport nanoparticles to the brain bypassing the blood–brain barrier. Nano Res. 2019, 12, 2760–2765.

Nano Research
Article number: 94907094
Cite this article:
Xiang J, Meng Y, Zhao M, et al. Super-self-assembly extraction from natural herbs. Nano Research, 2025, 18(2): 94907094. https://doi.org/10.26599/NR.2025.94907094
Topics:

1512

Views

1070

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 August 2024
Revised: 22 October 2024
Accepted: 23 October 2024
Published: 03 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return