Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In the thriving fields of thermal management fields, ceramic films with superior thermal insulation and excellent mechanical properties are in high demand. Nevertheless, the fabrication of ceramic films that combine both mechanical performance and low thermal conductivity remains highly challenging. Herein, we report a dual-phase Si3N4 nanowire-boron nitride (BN) nanosheet (SNB) with an intertwined structure, where BN nanosheets are firmly intertwined on the surface of Si3N4 nanowires. The results demonstrate that the SNB film possesses exceptional mechanical properties, with a tensile strength of 5.25 MPa, representing a 127% improvement over the Si3N4 nanowire film (SN) without BN nanosheets incorporation. Simultaneously, benefiting from the interface and cross-linking nodes formed between Si3N4 nanowires and BN nanosheets, the thermal conductivity of the SNB film is as low as 0.043 W·m–1·K–1, marking a 23% reduction compared to the SN film without BN nanosheets. Furthermore, the all-ceramic component characteristic endows the SNB film with high temperature resistance up to 1200 °C. The combination of high strength, low thermal conductivity, and high-temperature resistance enables the SNB film a promising candidate for applications in high temperature environments.
Li, S. L.; Wang, J.; Zhao, H. B.; Cheng, J. B.; Zhang, A. N.; Wang, T.; Cao, M.; Fu, T.; Wang, Y. Z. Ultralight biomass aerogels with multifunctionality and superelasticity under extreme conditions. ACS Appl. Mater. Interfaces 2021, 13, 59231–59242.
Chen, Z. W.; Su, D.; Zhu, W. X.; Wang, H. J.; Xu, L.; Li, X. L.; Ji, H. M. Anisotropic and hierarchical biphasic nanorod ceramic aerogels with thermal radiation shielded, high strength and exceptional stability for thermal superinsulation. J. Eur. Ceram. Soc. 2024, 44, 5710–5721.
Guo, J. R.; Fu, S. B.; Deng, Y. P.; Xu, X.; Laima, S.; Liu, D. Z.; Zhang, P. Y.; Zhou, J.; Zhao, H.; Yu, H. X. et al. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 2022, 606, 909–916.
Dou, L. Y.; Yang, B. B.; Lan, S.; Liu, Y. Q.; Lin, Y. H.; Nan, C. W. Nanonet-/fiber-structured flexible ceramic membrane enabling dielectric energy storage. J. Adv. Ceram. 2023, 12, 145–154.
Cui, Y.; Qin, Z. H.; Wu, H.; Li, M.; Hu, Y. J. Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Nat. Commun. 2021, 12, 1284.
Wang, J. Y.; Li, H. Y.; Liu, H. L.; Feng, Z. J.; Cui, Z. J.; Liao, X. L.; Zhang, B. L.; Li, Q. Polar bear hair inspired ternary composite ceramic aerogel with excellent interfacial bonding and efficient infrared transmittance for thermal insulation. J. Eur. Ceram. Soc. 2023, 43, 4927–4938.
Zhong, Y.; Li, H. Y.; Liu, H. L.; Wang, J. J.; Han, X.; Lu, L.; Xia, S. L. Elytra-mimetic ceramic fiber aerogel with excellent mechanical, anti-oxidation, and thermal insulation properties. J. Eur. Ceram. Soc. 2023, 43, 1407–1416.
Shin, S.; Wang, Q. Y.; Luo, J.; Chen, R. K. Advanced materials for high-temperature thermal transport. Adv. Funct. Mater. 2020, 30, 1904815.
Shan, H. R.; Si, Y.; Yu, J. Y.; Ding, B. Facile access to highly flexible and mesoporous structured silica fibrous membranes for tetracyclines removal. Chem. Eng. J. 2021, 417, 129211.
Zhang, X. X.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation. Chem. Eng. J. 2022, 433, 133628.
Lu, D.; Su, L.; Wang, H. J.; Niu, M.; Xu, L.; Ma, M. B.; Gao, H. F.; Cai, Z. X.; Fan, X. Y. Scalable fabrication of resilient SiC nanowires aerogels with exceptional high-temperature stability. ACS Appl. Mater. Interfaces 2019, 11, 45338–45344.
Huang, T.; Zhu, Y.; Zhu, J.; Yu, H.; Zhang, Q. H.; Zhu, M. F. Self-reinforcement of light, temperature-resistant silica nanofibrous aerogels with tunable mechanical properties. Adv. Fiber Mater. 2020, 2, 338–347.
Guo, C. C.; Ye, F.; Cheng, L. F. In situ growth of single crystal Si3N4 nanowire foam with good wave-transparency and heat insulation performance. Compos. B: Eng. 2021, 224, 109129.
Su, L.; Li, M. Z.; Wang, H. J.; Niu, M.; Lu, D.; Cai, Z. X. Resilient Si3N4 nanobelt aerogel as fire-resistant and electromagnetic wave-transparent thermal insulator. ACS Appl. Mater. Interfaces 2019, 11, 15795–15803.
Li, H. Y.; Zhang, L. L.; Liu, Y. Y.; Wang, T. T.; Wan, X. Y.; Sheng, H. C.; Li, H. J. Simultaneous optimization of mechanical and biotribological properties of carbon fibers reinforced hydroxyapatite-polymer composites by constructing networked Si3N4 nanowires. Vacuum 2024, 221, 112949.
Li, S. Z.; Cheng, X. T.; Han, G. T.; Si, Y.; Liu, Y. T.; Yu, J. Y.; Ding, B. Elastic and compressible Al2O3/ZrO2/La2O3 nanofibrous membranes for firefighting protective clothing. J. Colloid Inter. Sci. 2023, 636, 83–89.
Han, W. D.; Cui, F. H.; Si, Y.; Mao, X.; Ding, B.; Kim, H. Self-assembly of perovskite crystals anchored Al2O3-La2O3 nanofibrous membranes with robust flexibility and luminescence. Small 2018, 14, 1801963.
Zhang, X. Y.; Zhang, Y. F.; Qu, Y. N.; Wu, J. M.; Zhang, S. G.; Yang, J. L. Three-dimensional reticulated, spongelike, resilient aerogels assembled by SiC/Si3N4 nanowires. Nano Lett. 2021, 21, 4167–4175.
Xiao, S. S.; Mei, H.; Han, D. Y.; Cheng, L. F. Sandwich-like SiC nw /C/Si3N4 porous layered composite for full X-band electromagnetic wave absorption at elevated temperature. Compos. B: Eng. 2020, 183, 107629.
Liu, Y. Y.; Zhang, L. L.; Zhang, R. N.; Shao, S. Q.; Sun, L. N.; Wan, X. Y.; Wang, T. T. Thermal insulating and fire-retardant Si3N4 nanowire membranes resistant to high temperatures up to 1300 °C. J. Mater. Sci. Technol. 2023, 155, 82–88.
Liu, Y. Y.; Zhang, L. L.; Zhao, F.; Zhong, L.; Niu, J. Y.; Li, H. J. Surface decoration of flexible Si3N4 nanowire membrane by hydroxyapatite micron-flake with excellent thermal insulation at 1300 °C. Mater. Charact. 2024, 211, 113905.
Zhang, E. S.; Zhang, W. L.; Lv, T.; Li, J.; Dai, J. X.; Zhang, F.; Zhao, Y. M.; Yang, J. Y.; Li, W. J.; Zhang, H. Insulating and robust ceramic nanorod aerogels with high-temperature resistance over 1400 °C. ACS Appl. Mater. Interfaces 2021, 13, 20548–20558.
Tian, J.; Yang, Y.; Xue, T. T.; Chao, G. J.; Fan, W.; Liu, T. X. Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy. J. Mater. Sci. Technol. 2022, 105, 194–202.
Zhang, R. H.; Gong, X. B.; Wang, S.; Tian, Y. C.; Liu, Y. T.; Zhang, S. C.; Yu, J. Y.; Ding, B. Superelastic and fire-retardant nano-/microfibrous sponges for high-efficiency warmth retention. ACS Appl. Mater. Interfaces 2021, 13, 58027–58035.
Zhao, Y. S.; Yang, L. N.; Kong, L. Y.; Nai, M. H.; Liu, D.; Wu, J.; Liu, Y.; Chiam, S. Y.; Chim, W. K.; Lim, C. T. et al. Ultralow thermal conductivity of single-crystalline porous silicon nanowires. Adv. Funct. Mater. 2017, 27, 1702824.
Zhang, L. L.; Zhang, Y.; Zhu, F. Y.; Zhao, Z. J.; Yang, Y.; Sheng, H. C.; Hou, X. H.; Li, H. J. SiC nanowire-Si3N4 nanobelt interlocking interfacial enhancement of carbon fiber composites with boosting mechanical and frictional properties. ACS Appl. Mater. Interfaces 2021, 13, 20746–20753.
Zhang, X. X.; Wang, F.; Dou, L. Y.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 ℃. ACS Nano 2020, 14, 15616–15625.
Pan, W. S.; Liang, C. W.; Sui, Y. M.; Wang, J.; Liu, P.; Zou, P. C.; Guo, Z. B.; Wang, F. C.; Ren, X.; Yang, C. A highly compressible, elastic, and air-dryable metallic aerogels via magnetic field-assisted synthesis. Adv. Funct. Mater. 2022, 32, 2204166.
Zhang, X. X.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. All-ceramic and elastic aerogels with nanofibrous-granular binary synergistic structure for thermal superinsulation. ACS Nano 2022, 16, 5487–5495.
Li, J. Y.; Chen, Z.; Li, Q. Y.; Jin, L. H.; Zhao, Z. H. Harnessing friction in intertwined structures for high-capacity reusable energy-absorbing architected materials. Adv. Sci. 2022, 9, 2105769.
Chen, J.; Huang, X. Y.; Zhu, Y. K.; Jiang, P. K. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 2017, 27, 1604754.
Losego, M. D.; Grady, M. E.; Sottos, N. R.; Cahill, D. G.; Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 2012, 11, 502–506.
Xu, X.; Zhang, Q. Q.; Hao, M. L.; Hu, Y.; Lin, Z. Y.; Peng, L. L.; Wang, T.; Ren, X. X.; Wang, C.; Zhao, Z. P. et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science 2019, 363, 723–727.
Giri, A.; King, S. W.; Lanford, W. A.; Mei, A. B.; Merrill, D.; Li, L. Y.; Oviedo, R.; Richards, J.; Olson, D. H.; Braun, J. L. et al. Interfacial defect vibrations enhance thermal transport in amorphous multilayers with ultrahigh thermal boundary conductance. Adv. Mater. 2018, 30, 1804097.
Ning, D. D.; Lu, Z. Q.; Tian, C. Y.; Yan, N.; Hua, L. Hierarchical and superwettable cellulose acetate nanofibrous membranes decorated via 3D flower-like layered double hydroxides for efficient oil/water separation. Sep. Purif. Technol. 2024, 342, 127052.
Mao, X.; Hong, J.; Wu, Y. X.; Zhang, Q.; Liu, J.; Zhao, L.; Li, H. H.; Wang, Y. Y.; Zhang, K. An efficient strategy for reinforcing flexible ceramic membranes. Nano Lett. 2021, 21, 9419–9425.
Liu, C.; Wan, L. Q.; Li, Q.; Sun, X.; Natan, A.; Cao, D. X.; Luan, P. C.; Zhu, H. L. Ice-templated anisotropic flame-resistant boron nitride aerogels enhanced through surface modification and cellulose nanofibrils. ACS Appl. Polym. Mater. 2021, 3, 1358–1367.
Zhu, M. Y.; Li, G. Y.; Gong, W. B.; Yan, L. F.; Zhang, X. T. Calcium-doped boron nitride aerogel enables infrared stealth at high temperature up to 1300 °C. Nano-Micro Lett. 2022, 14, 18.
Wu, M.; Zhou, Y. L.; Zhang, H.; Liao, W. G. 2D boron nitride nanosheets for smart thermal management and advanced dielectrics. Adv. Mater. Interfaces 2022, 9, 2200610.
Chen, J.; Huang, X. Y.; Sun, B.; Wang, Y. X.; Zhu, Y. K.; Jiang, P. K. Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl. Mater. Interfaces 2017, 9, 30909–30917.
Jiang, D. P.; Qin, J.; Zhou, X. F.; Li, Q. L.; Yi, D. Q.; Wang, B. Improvement of thermal insulation and compressive performance of Al2O3–SiO2 aerogel by doping carbon nanotubes. Ceram. Int. 2022, 48, 16290–16299.
Ruan, K. P.; Shi, X. T.; Guo, Y. Q.; Gu, J. W. Interfacial thermal resistance in thermally conductive polymer composites: A review Compos. Commun. 2020, 22, 100518.
Wang, X.; Zhang, Y. Y.; Zhao, Y.; Li, G.; Yan, J. H.; Yu, J. Y.; Ding, B. A general strategy to fabricate flexible oxide ceramic nanofibers with gradient bending-resilience properties. Adv. Funct. Mater. 2021, 31, 2103989.
Su, L.; Wang, H. J.; Jia, S. H.; Dai, S.; Niu, M.; Ren, J. Q.; Lu, X. F.; Cai, Z. X.; Lu, D.; Li, M. Z. et al. Highly stretchable, crack-insensitive and compressible ceramic aerogel. ACS Nano 2021, 15, 18354–18362.
Shi, S. Y.; Yuan, K. K.; Xu, C. H.; Jin, X. T.; Xie, Y. S.; Wang, Z. H.; Wang, X. Q.; Zhu, L. Y.; Zhang, G. H.; Xu, D. Electrospun fabrication, excellent high-temperature thermal insulation and alkali resistance performance of calcium zirconate fiber. Ceram. Int. 2018, 44, 14013–14019.
Xie, Y. S.; Wang, L.; Liu, B. X.; Zhu, L. Y.; Shi, S. Y.; Wang, X. Q. Flexible, controllable, and high-strength near-infrared reflective Y2O3 nanofiber membrane by electrospinning a polyacetylacetone-yttrium precursor. Mater. Des. 2018, 160, 918–925.
Fu, F.; Zhang, Y. F.; Zhang, Y.; Chen, Y. Y. Synthesis of Mn-doped and anatase/rutile mixed-phase TiO2 nanofibers for high photoactivity performance. Catal. Sci. Technol. 2021, 11, 4181–4195.
Wang, Y.; Li, W.; Xia, Y. G.; Jiao, X. L.; Chen, D. R. Electrospun flexible self-standing γ-alumina fibrous membranes and their potential as high-efficiency fine particulate filtration media. J. Mater. Chem. A 2014, 2, 15124–15131.
729
Views
91
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).