Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nanoparticles self-assembly plays a pivotal role in designing new functional structural materials. The manipulation of interactions among nanoparticle building blocks is crucial for achieving assemblies with desired structures and properties. In this work, we assemble binary inorganic nanoparticles into alternating copolymer-like nanostructures by independently regulating hydrogen bonding and electrostatic interactions. The block copolymers grafted on nanoparticles feature oppositely charged groups, where electrostatic attraction drives the linear assembly of nanoparticles into alternate chain configurations. The hydrogen bonding interaction originates from the direct introduction of polyethylene glycol into the systems, serving as hydrogen bond acceptors with the grafted polymer and facilitating the side-by-side assembly of the chain structures. These two forces were observed to compete with each other during the assembly process, and could be precisely controlled by adjusting the quantities of acetic acid and polyethylene glycol, thus regulating the nanoparticle assembly behavior. This work provides a practical framework for the design of muti-force interactions in hierarchical colloid nanomaterials.
Saha, K.; Agasti, S. S.; Kim, C.; Li, X. N.; Rotello, V. M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739–2779.
Wu, X. L.; Hao, C. L.; Kumar, J.; Kuang, H.; Kotov, N. A.; Liz-Marzán, L. M.; Xu, C. L. Environmentally responsive plasmonic nanoassemblies for biosensing. Chem. Soc. Rev. 2018, 47, 4677–4696.
Kang, Y. J.; Ye, X. C.; Chen, J.; Cai, Y.; Diaz, R. E.; Adzic, R. R.; Stach, E. A.; Murray, C. B. Design of Pt-Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions. J. Am. Chem. Soc. 2013, 135, 42–45.
Langer, J.; Jimenez De Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117.
Peng, L. L.; Xiong, P.; Ma, L.; Yuan, Y. F.; Zhu, Y.; Chen, D. H.; Luo, X. Y.; Lu, J.; Amine, K.; Yu, G. H. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 2017, 8, 15139.
Song, J. B.; Wu, B. H.; Zhou, Z. J.; Zhu, G. Z.; Liu, Y. J.; Yang, Z.; Lin, L. S.; Yu, G. C.; Zhang, F. W.; Zhang, G. F. et al. Double-layered plasmonic-magnetic vesicles by self-assembly of janus amphiphilic gold-iron(II, III) oxide nanoparticles. Angew. Chem., Int. Ed. 2017, 56, 8110–8114.
He, J.; Huang, X. L.; Li, Y. C.; Liu, Y. J.; Babu, T.; Aronova, M. A.; Wang, S. J.; Lu, Z. Y.; Chen, X. Y.; Nie, Z. H. Self-assembly of amphiphilic plasmonic micelle-like nanoparticles in selective solvents. J. Am. Chem. Soc. 2013, 135, 7974–7984.
Ye, S. S.; Zha, H.; Xia, Y. F.; Dong, W. H.; Yang, F.; Yi, C. L.; Tao, J.; Shen, X. X.; Yang, D.; Nie, Z. H. Centimeter-scale superlattices of three-dimensionally orientated plasmonic dimers with highly tunable collective properties. ACS Nano 2022, 16, 4609–4618.
Hsu, S. W.; Rodarte, A. L.; Som, M.; Arya, G.; Tao, A. R. Colloidal plasmonic nanocomposites: From fabrication to optical function. Chem. Rev. 2018, 118, 3100–3120.
Yang, F.; Ye, S. S.; Dong, W. H.; Zheng, D.; Xia, Y. F.; Yi, C. L.; Tao, J.; Sun, C.; Zhang, L.; Wang, L. et al. Laser-scanning-guided assembly of quasi-3D patterned arrays of plasmonic dimers for information encryption. Adv. Mater. 2021, 33, e2100325.
Yan, Y.; Warren, S. C.; Fuller, P.; Grzybowski, B. A. Chemoelectronic circuits based on metal nanoparticles. Nat. Nanotechnol. 2016, 11, 603–608.
Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244–1252.
Wang, L. B.; Xu, L. G.; Kuang, H.; Xu, C. L.; Kotov, N. A. Dynamic nanoparticle assemblies. Acc. Chem. Res. 2012, 45, 1916–1926.
Hill, L. J.; Pinna, N.; Char, K.; Pyun, J. Colloidal polymers from inorganic nanoparticle monomers. Prog. Polym. Sci. 2015, 40, 85–120.
Nie, Z. H.; Fava, D.; Kumacheva, E.; Zou, S.; Walker, G. C.; Rubinstein, M. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 2007, 6, 609–614.
Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J. Am. Chem. Soc. 2003, 125, 13914–13915.
DeVries, G. A.; Brunnbauer, M.; Hu, Y.; Jackson, A. M.; Long, B.; Neltner, B. T.; Uzun, O.; Wunsch, B. H.; Stellacci, F. Divalent metal nanoparticles. Science 2007, 315, 358–361.
Li, W. Y.; Liu, B.; Hubert, C.; Perro, A.; Duguet, E.; Ravaine, S. Self-assembly of colloidal polymers from two-patch silica nanoparticles. Nano Res. 2020, 13, 3371–3376.
Yatsui, T.; Ryu, Y.; Morishima, T.; Nomura, W.; Kawazoe, T.; Yonezawa, T.; Washizu, M.; Fujita, H.; Ohtsu, M. Self-assembly method of linearly aligning ZnO quantum dots for a nanophotonic signal transmission device. Appl. Phys. Lett. 2010, 96, 133106.
Kawamura, G.; Yang, Y.; Nogami, M. Facile assembling of gold nanorods with large aspect ratio and their surface-enhanced Raman scattering properties. Appl. Phys. Lett. 2007, 90, 261908.
Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.
Zhao, Y.; Xu, L. G.; Liz-Marzán, L. M.; Kuang, H.; Ma, W.; Asenjo-Garcı́a, A.; García de Abajo, F. J.; Kotov, N. A.; Wang, L. B.; Xu, C. L. Alternating plasmonic nanoparticle heterochains made by polymerase chain reaction and their optical properties. J. Phys. Chem. Lett. 2013, 4, 641–647.
He, H. B.; Shen, X. X.; Yao, C. Y.; Tao, J.; Chen, W. W.; Nie, Z. H.; Wu, Y.; Dai, L. W.; Sang, Y. T. Hierarchically responsive alternating nano-copolymers with tailored interparticle bonds. Angew. Chem., Int. Ed. 2024, 63, e202401828.
Kastilani, R.; Wong, R.; Pozzo, L. D. Efficient electrosteric assembly of nanoparticle heterodimers and linear heteroassemblies. Langmuir 2018, 34, 826–836.
Wu, D. D.; Sinha, N.; Lee, J.; Sutherland, B. P.; Halaszynski, N. I.; Tian, Y.; Caplan, J.; Zhang, H. V.; Saven, J. G.; Kloxin, C. J. et al. Polymers with controlled assembly and rigidity made with click-functional peptide bundles. Nature 2019, 574, 658–662.
Yi, C. L.; Yang, Y. Q.; Nie, Z. H. Alternating copolymerization of inorganic nanoparticles. J. Am. Chem. Soc. 2019, 141, 7917–7925.
Yu, S.; An, S. J.; Kim, K. J.; Lee, J. H.; Chi, W. S. High-loading poly(ethylene glycol)-blended poly(acrylic acid) membranes for CO2 separation. ACS Omega 2023, 8, 2119–2127.
Zou, S. F.; Lv, R. H.; Tong, Z. Z.; Na, B.; Fu, K.; Liu, H. S. In situ hydrogen-bonding complex mediated shape memory behavior of PAA/PEO blends. Polymer 2019, 183, 121878
Zhang, W.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 2021, 12, 4082.
398
Views
90
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).