Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cartilage defects are commonly observed in orthopedic clinical studies. Owing to the unique structure of cartilage tissue, current clinical treatments cannot fully address this issue. Cartilage organoids are three-dimensional (3D) active tissue structures constructed in vitro to mimic the structure and function of natural cartilage tissue and can be utilized for disease research and cartilage repair. In this study, we engineered MNPs-BMSCs by introducing magnetic nanoparticles (MNPs) into bone marrow mesenchymal stem cells (BMSCs). Under the influence of the magnetic field induced by the MNPs, MNPs-BMSCs became polarized, significantly enhancing their aggregation, migration, and chondrogenic differentiation capabilities. We then used these engineered MNPs-BMSCs as seed cells and applied 3D bioprinting technology to construct an advanced cartilage organoid using a MNPs-BMSC/alginate/gelatin matrix. This structure partially mimics the middle layer of a cartilage. The advanced cartilage organoid demonstrated superior chondrogenic differentiation ability and mechanical properties in vitro. It significantly enhanced tissue repair in cartilage defect areas in vivo, restoring the normal structure of the cartilage layer. Overall, the engineered MNPs-BMSCs/alginate/gelatin advanced cartilage organoids offer a promising approach for studying cartilage tissue in vitro and advancing cartilage repair within the field of tissue engineering.
Li, S. A.; Niu, D. W.; Fang, H. W.; Chen, Y. C.; Li, J. Y.; Zhang, K. X.; Yin, J. B.; Fu, P. L. Tissue adhesive, ROS scavenging and injectable PRP-based 'plasticine' for promoting cartilage repair. Regen. Biomater. 2024, 11, rbad104.
Shen, C. Y.; Wang, J.; Li, G. F.; Hao, S. Y.; Wu, Y.; Song, P. R.; Han, Y. F.; Li, M. M.; Wang, G. C.; Xu, K. et al. Boosting cartilage repair with silk fibroin-DNA hydrogel-based cartilage organoid precursor. Bioact. Mater. 2024, 35, 429–444.
Nordberg, R. C.; Bielajew, B. J.; Takahashi, T.; Dai, S. Y.; Hu, J. C.; Athanasiou, K. A. Recent advancements in cartilage tissue engineering innovation and translation. Nat. Rev. Rheumatol. 2024, 20, 323–346.
Lee, E.; Epanomeritakis, I. E.; Lu, V.; Khan, W. Bone marrow-derived mesenchymal stem cell implants for the treatment of focal chondral defects of the knee in animal models: A systematic review and meta-analysis. Int. J. Mol. Sci. 2023, 24, 3227.
Mamidi, M. K.; Das, A. K.; Zakaria, Z.; Bhonde, R. Mesenchymal stromal cells for cartilage repair in osteoarthritis. Osteoarthr. Cartil. 2016, 24, 1307–1316.
Deng, C. J.; Li, Z. G.; Lu, L. Y.; Zhang, H. N.; Chen, R. Z.; Liu, Y. L.; Tong, Y. F.; Fan, O. R.; Huang, W. X.; Sun, Y. E. et al. Sophisticated magneto-mechanical actuation promotes in situ stem cell assembly and chondrogenesis for treating osteoarthritis. ACS Nano 2023, 17, 21690–21707.
Wang, S. Q.; Yang, L. T.; Cai, B. L.; Liu, F. W.; Hou, Y. N.; Zheng, H.; Cheng, F.; Zhang, H. P.; Wang, L.; Wang, X. Y. et al. Injectable hybrid inorganic nanoscaffold as rapid stem cell assembly template for cartilage repair. Natl. Sci. Rev. 2022, 9, nwac037.
Butler, M. T.; Wallingford, J. B. Planar cell polarity in development and disease. Nat. Rev. Mol. Cell Biol. 2017, 18, 375–388.
Yamashita, Y. M.; Yuan, H. B.; Cheng, J.; Hunt, A. J. Polarity in stem cell division: Asymmetric stem cell division in tissue homeostasis. Cold Spring Harb. Perspect. Biol. 2010, 2, a001313.
Kim, E. J. Y.; Korotkevich, E.; Hiiragi, T. Coordination of cell polarity, mechanics and fate in tissue self-organization. Trends Cell Biol. 2018, 28, 541–550.
Alagiri, M.; Muthamizhchelvan, C.; Ponnusamy, S. Structural and magnetic properties of iron, cobalt and nickel nanoparticles. Synth. Met. 2011, 161, 1776–1780.
Farzin, A.; Etesami, S. A.; Quint, J.; Memic, A.; Tamayol, A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv. Healthc. Mater. 2020, 9, 1901058.
Chen, Y. L.; Hou, S. K. Application of magnetic nanoparticles in cell therapy. Stem. Cell Res. Ther. 2022, 13, 135.
Bianchi, E.; Vigani, B.; Viseras, C.; Ferrari, F.; Rossi, S.; Sandri, G. Inorganic nanomaterials in tissue engineering. Pharmaceutics 2022, 14, 1127.
Zhou, C. C.; Wang, C. L.; Xu, K.; Niu, Z. X.; Zou, S. J.; Zhang, D. M.; Qian, Z. Y.; Liao, J. F.; Xie, J. Hydrogel platform with tunable stiffness based on magnetic nanoparticles cross-linked GelMA for cartilage regeneration and its intrinsic biomechanism. Bioact. Mater. 2023, 25, 615–628.
Lin, T.; Zhao, Y.; Chen, J. L.; Wu, C. X.; Li, Z.; Cao, Y. M.; Lu, R.; Zhang, J. W.; Zhao, C.; Lu, Y. Carboxymethyl chitosan-assisted MnO x nanoparticles: Synthesis, characterization, detection and cartilage repair in early osteoarthritis. Carbohydr. Polym. 2022, 294, 119821.
Go, G.; Han, J. W. N.; Zhen, J.; Zheng, S. H.; Yoo, A.; Jeon, M. J.; Park, J. O.; Park, S. A magnetically actuated microscaffold containing mesenchymal stem cells for articular cartilage repair. Adv. Healthc. Mater. 2017, 6, 1601378.
Zhang, N. Y.; Lock, J.; Sallee, A.; Liu, H. N. Magnetic nanocomposite hydrogel for potential cartilage tissue engineering: Synthesis, characterization, and cytocompatibility with bone marrow derived mesenchymal stem cells. ACS Appl. Mater. Interfaces 2015, 7, 20987–20998.
Kunze, A.; Tseng, P.; Godzich, C.; Murray, C.; Caputo, A.; Schweizer, F. E.; Di Carlo, D. Engineering cortical neuron polarity with nanomagnets on a chip. ACS Nano 2015, 9, 3664–3676.
Kim, Y. J.; Lee, D. B.; Jeong, E.; Jeon, J. Y.; Kim, H. D.; Kang, H. E. M.; Kim, Y. K. Magnetically stimulated integrin binding alters cell polarity and affects epithelial-mesenchymal plasticity in metastatic cancer cells. ACS Appl. Mater. Interfaces 2024, 16, 8365–8377.
Clevers, H. Modeling development and disease with organoids. Cell 2016, 165, 1586–1597.
Takebe, T.; Wells, J. M. Organoids by design. Science 2019, 364, 956–959.
Hu, Y.; Zhang, H.; Wang, S. C.; Cao, L. H.; Zhou, F. J.; Jing, Y. Y.; Su, J. C. Bone/cartilage organoid on-chip: Construction strategy and application. Bioact. Mater. 2023, 25, 29–41.
Dönges, L.; Damle, A.; Mainardi, A.; Bock, T.; Schönenberger, M.; Martin, I.; Barbero, A. Engineered human osteoarthritic cartilage organoids. Biomaterials 2024, 308, 122549.
X.; Hu, D. A.; Wu, D.; He, F.; Wang, H.; Huang, L. J.; Shi, D. Y.; Liu, Q.; Ni, N.; Pakvasa, M. et al. Applications of biocompatible scaffold materials in stem cell-based cartilage tissue engineering. Front. Bioeng. Biotechnol. 2021, 9, 603444.
Ding, Z. Y.; Tang, N.; Huang, J. J.; Cao, X.; Wu, S. Global hotspots and emerging trends in 3D bioprinting research. Front. Bioeng. Biotechnol. 2023, 11, 1169893.
Zhang, Y.; Li, G. F.; Wang, J.; Zhou, F. J.; Ren, X. X.; Su, J. C. Small joint organoids 3D bioprinting: Construction strategy and application. Small 2024, 20, 2302506.
Łabowska, M. B.; Cierluk, K.; Jankowska, A. M.; Kulbacka, J.; Detyna, J.; Michalak, I. A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials (Basel) 2021, 14, 858.
Xia, H. S.; Liang, C.; Luo, P.; Huang, J. J.; He, J. S.; Wang, Z. L.; Cao, X.; Peng, C.; Wu, S. Pericellular collagen I coating for enhanced homing and chondrogenic differentiation of mesenchymal stem cells in direct intra-articular injection. Stem. Cell Res. Ther. 2018, 9, 174.
Cui, Z.; Zhou, L. P.; Huang, J. J.; Xu, L.; Ding, Z. Y.; Hu, H.; Cao, X.; Zhao, M.; Wu, S. Dual-model biomanufacturing of porous biomimetic scaffolds with concentrated growth factors and embedded endothelial vascular channels for bone defect regeneration. Chem. Eng. J. 2024, 483, 148933.
Rarokar, N.; Yadav, S.; Saoji, S.; Bramhe, P.; Agade, R.; Gurav, S.; Khedekar, P.; Subramaniyan, V.; Wong, L. S.; Kumarasamy, V. Magnetic nanosystem a tool for targeted delivery and diagnostic application: Current challenges and recent advancement. Int. J. Pharm. X 2024, 7, 100231.
Zhang, S. L.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Size-dependent endocytosis of nanoparticles. Adv. Mater. 2009, 21, 419–424.
Yu, C. C.; Yang, W. T.; Yang, L. J.; Ye, L.; Sun, R. T.; Gu, T. Y.; Ying, X. Z.; Wang, M. N.; Tang, R. K.; Fan, S. W. et al. Synergistic effect of magneto-mechanical bioengineered stem cells and magnetic field to alleviate osteoporosis. ACS Appl. Mater. Interfaces 2023, 15, 19976–19988.
Miao, Y. C.; Pourquié, O. Cellular and molecular control of vertebrate somitogenesis. Nat. Rev. Mol. Cell Biol. 2024, 25, 517–533.
Andrews, M. G.; Subramanian, L.; Salma, J.; Kriegstein, A. R. How mechanisms of stem cell polarity shape the human cerebral cortex. Nat. Rev. Neurosci. 2022, 23, 711–724.
Wodarz, A.; Näthke, I. Cell polarity in development and cancer. Nat. Cell Biol. 2007, 9, 1016–1024.
Akilbekova, D.; Shaimerdenova, M.; Adilov, S.; Berillo, D. Biocompatible scaffolds based on natural polymers for regenerative medicine. Int. J. Biol. Macromol. 2018, 114, 324–333.
Guillén-Carvajal, K.; Valdez-Salas, B.; Beltrán-Partida, E.; Salomón-Carlos, J.; Cheng, N. Chitosan, gelatin, and collagen hydrogels for bone regeneration. Polymers (Basel) 2023, 15, 2762.
Zhao, L. L.; Zhou, Y. F.; Zhang, J. Y.; Liang, H. Z.; Chen, X. W.; Tan, H. Natural polymer-based hydrogels: From polymer to biomedical applications. Pharmaceutics 2023, 15, 2514.
Abe, K.; Yamashita, A.; Morioka, M.; Horike, N.; Takei, Y.; Koyamatsu, S.; Okita, K.; Matsuda, S.; Tsumaki, N. Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect. Nat. Commun. 2023, 14, 804.
Huey, D. J.; Hu, J. C.; Athanasiou, K. A. Unlike bone, cartilage regeneration remains elusive. Science 2012, 338, 917–921.
Tognana, E.; Chen, F.; Padera, R. F.; Leddy, H. A.; Christensen, S. E.; Guilak, F.; Vunjak-Novakovic, G.; Freed, L. E. Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro. Osteoarthritis Cartilage 2005, 13, 129–138.
Yang, Z.; Wang, B.; Liu, W.; Li, X. K.; Liang, K. N.; Fan, Z. J.; Li, J. J.; Niu, Y. D.; He, Z. H.; Li, H. et al. In situ self-assembled organoid for osteochondral tissue regeneration with dual functional units. Bioact. Mater. 2023, 27, 200–215.
Zhou, Z. Y.; Song, P. R.; Wu, Y.; Wang, M. M.; Shen, C. Y.; Ma, Z. X.; Ren, X. X.; Wang, X. H.; Chen, X.; Hu, Y. et al. Dual-network DNA-silk fibroin hydrogels with controllable surface rigidity for regulating chondrogenic differentiation. Mater. Horiz. 2024, 11, 1465–1483.
Hall, G. N.; Tam, W. L.; Andrikopoulos, K. S.; Casas-Fraile, L.; Voyiatzis, G. A.; Geris, L.; Luyten, F. P.; Papantoniou, I. Patterned, organoid-based cartilaginous implants exhibit zone specific functionality forming osteochondral-like tissues in vivo. Biomaterials 2021, 273, 120820.
Zhao, Z. X.; Chen, X. Y.; Dowbaj, A. M.; Sljukic, A.; Bratlie, K.; Lin, L. D.; Fong, E. L. S.; Balachander, G. M.; Chen, Z. W.; Soragni, A. et al. Organoids. Nat. Rev. Methods Primers 2022, 2, 94.
Li, X. L.; Sheng, S. H.; Li, G. F.; Hu, Y.; Zhou, F. J.; Geng, Z.; Su, J. C. Research progress in hydrogels for cartilage organoids. Adv. Healthc. Mater. 2024, 13, 2400431.
Hao, J.; Zhang, Y. L.; Jing, D.; Shen, Y.; Tang, G.; Huang, S. S.; Zhao, Z. H. Mechanobiology of mesenchymal stem cells: Perspective into mechanical induction of MSC fate. Acta Biomater. 2015, 20, 1–9.
Goršak, T.; Jovičić, E. J.; Tratnjek, L.; Križaj, I.; Sepulveda, B.; Nogues, J.; Kreft, M. E.; Petan, T.; Kralj, S.; Makovec, D. The efficient magneto-mechanical actuation of cancer cells using a very low concentration of non-interacting ferrimagnetic hexaferrite nanoplatelets. J. Colloid Interface Sci. 2024, 657, 778–787.
Bloch, D.; Yalovsky, S. Cell polarity signaling. Curr. Opin. Plant Biol. 2013, 16, 734–742.
Ebnet, K.; Kummer, D.; Steinbacher, T.; Singh, A.; Nakayama, M.; Matis, M. Regulation of cell polarity by cell adhesion receptors. Semin. Cell Dev. Biol. 2018, 81, 2–12.
Blanchoin, L.; Boujemaa-Paterski, R.; Sykes, C.; Plastino, J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 2014, 94, 235–263.
Holmes, W. R.; Park, J.; Levchenko, A.; Edelstein-Keshet, L. A mathematical model coupling polarity signaling to cell adhesion explains diverse cell migration patterns. PLoS Comput. Biol. 2017, 13, e1005524.
Raman, R.; Pinto, C. S.; Sonawane, M. Polarized organization of the cytoskeleton: Regulation by cell polarity proteins. J. Mol. Biol. 2018, 430, 3565–3584.
Fischer, R. S.; Sun, X. Y.; Baird, M. A.; Hourwitz, M. J.; Seo, B. R.; Pasapera, A. M.; Mehta, S. B.; Losert, W.; Fischbach, C.; Fourkas, J. T. et al. Contractility, focal adhesion orientation, and stress fiber orientation drive cancer cell polarity and migration along wavy ECM substrates. Proc. Natl. Acad. Sci. USA 2021, 118, e2021135118.
Woods, A.; Wang, G. Y.; Beier, F. Regulation of chondrocyte differentiation by the actin cytoskeleton and adhesive interactions. J. Cell. Physiol. 2007, 213, 1–8.
Huang, D. Y.; Li, Y. H.; Ma, Z. H.; Lin, H.; Zhu, X. D.; Xiao, Y.; Zhang, X. D. Collagen hydrogel viscoelasticity regulates MSC chondrogenesis in a ROCK-dependent manner. Sci. Adv. 2023, 9, eade9497.
Guo, J. Q.; Wang, F. B.; Huang, Y. M.; He, H. J.; Tan, W. Y.; Yi, M. H.; Egelman, E. H.; Xu, B. Cell spheroid creation by transcytotic intercellular gelation. Nat. Nanotechnol. 2023, 18, 1094–1104.
Bradley, E. W.; Drissi, M. H. Wnt5b regulates mesenchymal cell aggregation and chondrocyte differentiation through the planar cell polarity pathway. J. Cell. Physiol. 2011, 226, 1683–1693.
Hodgkinson, T.; Kelly, D. C.; Curtin, C. M.; O'Brien, F. J. Mechanosignalling in cartilage: An emerging target for the treatment of osteoarthritis. Nat. Rev. Rheumatol. 2022, 18, 67–84.
Tang, X. Y.; Wu, S. S.; Wang, D.; Chu, C.; Hong, Y.; Tao, M. D.; Hu, H.; Xu, M.; Guo, X.; Liu, Y. Human organoids in basic research and clinical applications. Signal Transduct. Target. Ther. 2022, 7, 168.
Correia Carreira, S.; Begum, R.; Perriman, A. W. 3D bioprinting: The emergence of programmable biodesign. Adv. Healthc. Mater. 2020, 9, 1900554.
Ren, Y.; Yang, X.; Ma, Z. J.; Sun, X.; Zhang, Y. X.; Li, W. T.; Yang, H.; Qiang, L.; Yang, Z. Z.; Liu, Y. H. et al. Developments and opportunities for 3D bioprinted organoids. Int. J. Bioprint. 2021, 7, 364.
Nerger, B. A.; Sinha, S.; Lee, N. N.; Cheriyan, M.; Bertsch, P.; Johnson, C. P.; Mahadevan, L.; Bonventre, J. V.; Mooney, D. J. 3D hydrogel encapsulation regulates nephrogenesis in kidney organoids. Adv. Mater. 2024, 36, 2308325.
Carpentier, N.; Ye, S. C.; Delemarre, M. D.; Van der Meeren, L.; Skirtach, A. G.; van der Laan, L. J. W.; Schneeberger, K.; Spee, B.; Dubruel, P.; Van Vlierberghe, S. Gelatin-based hybrid hydrogels as matrices for organoid culture. Biomacromolecules 2024, 25, 590–604.
Liu, D. S.; Nikoo, M.; Boran, G.; Zhou, P.; Regenstein, J. M. Collagen and gelatin. Annu. Rev. Food Sci. Technol. 2015, 6, 527–557.
Rastogi, P.; Kandasubramanian, B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication 2019, 11, 042001.
Matai, I.; Kaur, G.; Seyedsalehi, A.; McClinton, A.; Laurencin, C. T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 2020, 226, 119536.
Bhumiratana, S.; Eton, R. E.; Oungoulian, S. R.; Wan, L. Q.; Ateshian, G. A.; Vunjak-Novakovic, G. Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proc. Natl. Acad. Sci. USA 2014, 111, 6940–6945.
Anderson, J. A.; Little, D.; Toth, A. P.; Moorman, C. T.; Tucker, B. S.; Ciccotti, M. G.; Guilak, F. Stem cell therapies for knee cartilage repair: The current status of preclinical and clinical studies. Am. J. Sports Med. 2014, 42, 2253–2261.
481
Views
110
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).