AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (48.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Enhanced oral drug delivery by mimicking natural amino acid and oligopeptide absorption route

Ruinan Wu1,§Xiaoxing Fan1,§Licheng Wu1Liyun Xing1Jinxia Kong1Zhou Zhou1Jingyuan Wen2Lian Li1 ( )Yuan Huang1 ( )
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand

§ Ruinan Wu and Xiaoxing Fan contributed equally to this work.

Show Author Information

Graphical Abstract

Compared with amino acid, oligopeptide-simulated oral drug delivery system (lysine-methionine-modified nanoparticles (L-M NPs) and lysine-valine-modified NPs (L-V NPs)) was more suitable for oral drug delivery. They had higher transepithelial transport efficiency and were primarily absorbed in the proximal small intestine due to the high expression and transportation mediated by proton coupled oligopeptide transporter 1 (PEPT1).

Abstract

Oral delivery of protein and peptide drugs presents considerable challenges due to their susceptibility to digestive enzymes in gastrointestinal (GI) tract and low efficiency of transepithelial transport. Herein, inspired by efficient absorption of protein-based nutrients, we constructed several kinds of oral drug delivery systems by mimicking natural amino acid and oligopeptide absorption route. Three kinds of amino acids and two kinds of oligopeptides were chosen as targeting ligands to mediate transportation of orally administered nanoparticles (NPs). Liraglutide (Lira), a kind of glucagon like peptide-1 (GLP-1) receptor agonist, was used as model drug. These functionalized NPs could protect Lira from enzymatic degradation in GI tract. Moreover, compared with amino acid-modified NPs, oligopeptide-modified NPs exhibited greater transepithelial transport efficiency and were primarily absorbed in the proximal small intestine due to the high expression and transportation mediated by proton coupled oligopeptide transporter 1 (PEPT1). These Lira-loaded NPs could effectively control the blood glucose level, reduce plasma lipid level, and repair tissue damage on type 2 diabetic mice and even showed comparable hypoglycemic effects of subcutaneous injection (s.c.) free Lira. Our study demonstrates the potential of mimicking natural oligopeptide absorption route to enhance oral delivery of protein and peptide drugs.

Electronic Supplementary Material

Download File(s)
7082_ESM.pdf (1.4 MB)

References

[1]

Ji, W.; Zhang, P.; Zhou, Y. G.; Zhou, X. Q.; Ma, X. F.; Tan, T. W.; Cao, H. Hydrogel-encapsulated medium chain lipid-modified zeolite imidazole framework-90 as a promising platform for oral delivery of proteins. J. Control. Release 2024, 367, 93–106.

[2]

Wu, R. N.; Wu, Z. H.; Xing, L. Y.; Liu, X.; Wu, L.; Zhou, Z.; Li, L.; Huang, Y. Mimicking natural cholesterol assimilation to elevate the oral delivery of liraglutide for type II diabetes therapy. Asian J. Pharm. Sci. 2022, 17, 653–665.

[3]

Anselmo, A. C.; Gokarn, Y.; Mitragotri, S. Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 2019, 18, 19–40.

[4]

Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 2020, 19, 277–289.

[5]

Abeer, M. M.; Rewatkar, P.; Qu, Z.; Talekar, M.; Kleitz, F.; Schmid, R.; Lindén, M.; Kumeria, T.; Popat, A. Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. J. Control. Release 2020, 326, 544–555.

[6]

Han, Y.; Gao, Z. G.; Chen, L. Q.; Kang, L.; Huang, W.; Jin, M. J.; Wang, Q. M.; Bae, Y. H. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm. Sin. B 2019, 9, 902–922.

[7]

Brayden, D. J.; Alonso, M. J. Oral delivery of peptides: Opportunities and issues for translation. Adv. Drug Deliv. Rev. 2016, 106, 193–195.

[8]

Haddadzadegan, S.; Dorkoosh, F.; Bernkop-Schnürch, A. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv. Drug Deliv. Rev. 2022, 182, 114097.

[9]

Have, G. A. M. T.; Engelen, M. P. K. J.; Luiking, Y. C.; Deutz, N. E. P. Absorption kinetics of amino acids, peptides, and intact proteins. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, S23–S36.

[10]

Trommelen, J.; Tomé, D.; van Loon, L. J. C. Gut amino acid absorption in humans: Concepts and relevance for postprandial metabolism. Clin. Nutr. Open Sci. 2021, 36, 43–55.

[11]

Adibi, S. A.; Gray, S. J.; Menden, E. The kinetics of amino acid absorption and alteration of plasma composition of free amino acids after intestinal perfusion of amino acid mixtures. Am. J. Clin. Nutr. 1967, 20, 24–33.

[12]

Bröer, S.; Fairweather, S. J. Amino acid transport across the mammalian intestine. Compr. Physiol. 2019, 9, 343–373.

[13]

Loveday, S. M. Protein digestion and absorption: The influence of food processing. Nutr. Res. Rev. 2023, 36, 544–559.

[14]

Bröer, S.; Gauthier-Coles, G. Amino acid homeostasis in mammalian cells with a focus on amino acid transport. J. Nutr. 2022, 152, 16–28.

[15]

Xia, R.; Peng, H. F.; Zhang, X.; Zhang, H. S. Comprehensive review of amino acid transporters as therapeutic targets. Int. J. Biol. Macromol. 2024, 260, 129646.

[16]

Spanier, B.; Rohm, F. Proton coupled oligopeptide transporter 1 (PepT1) function, regulation, and influence on the intestinal homeostasis. Compr. Physiol. 2018, 8, 843–869.

[17]

Bröer, S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 2008, 88, 249–286.

[18]

Bröer, S.; Bröer, A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 2017, 474, 1935–1963.

[19]
Bhutia, Y. D.; Ganapathy, V. Protein digestion and absorption. In Physiology of the Gastrointestinal Tract, 6th ed. Said, H. M., Ed.; Elsevier: Amsterdam, 2018; pp 1063–1086.
[20]

Wu, L.; Liu, M.; Shan, W.; Zhu, X.; Li, L. J.; Zhang, Z. R.; Huang, Y. Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs. J. Control. Release 2017, 262, 273–283.

[21]

Wu, L. C.; Xing, L. Y.; Wu, R. N.; Fan, X. X.; Ni, M. J.; Xiao, X.; Zhou, Z.; Li, L.; Wen, J. Y.; Huang, Y. Lipoic acid-mediated oral drug delivery system utilizing changes on cell surface thiol expression for the treatment of diabetes and inflammatory diseases. J. Mater. Chem. B 2024, 12, 3970–3983.

[22]

Wu, L.; Bai, Y. L.; Wang, L. L.; Liu, X.; Zhou, R.; Li, L.; Wu, R. N.; Zhang, Z. R.; Zhu, X.; Huang, Y. Promoting apical-to-basolateral unidirectional transport of nanoformulations by manipulating the nutrient-absorption pathway. J. Control. Release 2020, 323, 151–160.

[23]

Avignon, A.; Radauceanu, A.; Monnier, L. Nonfasting plasma glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes. Diabetes Care 1997, 20, 1822–1826.

[24]

Small, L.; Ehrlich, A.; Iversen, J.; Ashcroft, S. P.; Trošt, K.; Moritz, T.; Hartmann, B.; Holst, J. J.; Treebak, J. T.; Zierath, J. R. et al. Comparative analysis of oral and intraperitoneal glucose tolerance tests in mice. Mol. Metab. 2022, 57, 101440.

[25]

Yu, M. R.; Yang, Y. W.; Zhu, C. L.; Guo, S. Y.; Gan, Y. Advances in the transepithelial transport of nanoparticles. Drug Discov. Today 2016, 21, 1155–1161.

[26]

Xi, Z. Y.; Ahmad, E.; Zhang, W.; Li, J. Y.; Wang, A. H.; Faridoon; Wang, N.; Zhu, C. L.; Huang, W.; Xu, L. et al. Dual-modified nanoparticles overcome sequential absorption barriers for oral insulin delivery. J. Control. Release 2022, 342, 1–13.

[27]

Xu, Y. N.; Zheng, Y. X.; Wu, L.; Zhu, X.; Zhang, Z. R.; Huang, Y. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl. Mater. Interfaces 2018, 10, 9315–9324.

[28]

Yun, Y.; Cho, Y. W.; Park, K. Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev. 2013, 65, 822–832.

[29]

Pangeni, R.; Kang, S.; Jha, S. K.; Subedi, L.; Park, J. W. Intestinal membrane transporter-mediated approaches to improve oral drug delivery. J. Pharm. Investig. 2021, 51, 137–158.

[30]

Du, Y. Q.; Tian, C. T.; Wang, M. L.; Huang, D.; Wei, W.; Liu, Y.; Li, L.; Sun, B. J.; Kou, L. F.; Kan, Q. M. et al. Dipeptide-modified nanoparticles to facilitate oral docetaxel delivery: New insights into PepT1-mediated targeting strategy. Drug Deliv. 2018, 25, 1403–1413.

[31]

Watanabe, K.; Terada, K.; Jinriki, T.; Sato, J. Effect of insulin on cephalexin uptake and transepithelial transport in the human intestinal cell line Caco-2. Eur. J. Pharm. Sci. 2004, 21, 87–95.

[32]

Wu, L.; Bai, Y. L.; Liu, M.; Li, L.; Shan, W.; Zhang, Z. R.; Huang, Y. Transport mechanisms of butyrate modified nanoparticles: Insight into “easy entry, hard transcytosis” of active targeting system in oral administration. Mol. Pharmaceutics 2018, 15, 4273–4283.

[33]

Zhao, H. Y.; Chen, Y. Q.; Luo, X. Y.; Cai, M. J.; Li, J. Y.; Lin, X. Y.; Zhang, H.; Ding, H. M.; Jiang, G. L.; Hu, Y. Ligand phase separation-promoted, “squeezing-out” mode explaining the mechanism and implications of neutral nanoparticles that escaped from lysosomes. ACS Nano 2024, 18, 2162–2183.

[34]

Vermeulen, L. M. P.; De Smedt, S. C.; Remaut, K.; Braeckmans, K. The proton sponge hypothesis: Fable or fact. Eur. J. Pharm. Biopharm. 2018, 129, 184–190.

[35]

Fairweather, S. J.; Bröer, A.; O'Mara, M. L.; Bröer, S. Intestinal peptidases form functional complexes with the neutral amino acid transporter B0AT1. Biochem. J. 2012, 446, 135–148.

[36]

Barkin, R. J. Protein absorption: Development and present state of the subject. David Matthews, Wiley-Liss, New York, 1991, 414 pages. JPEN J. Parenter. Enteral. Nutr. 1992, 16, 186.

[37]

Das, M.; Radhakrishnan, A. N. A comparative study of the distribution of soluble and particulate glycyl-l-leucine hydrolase in the small intestine. Clin. Sci. Mol. Med. 1974, 46, 501–510.

[38]

Li, A. Y.; Wang, Y. P.; Li, Z. X.; Qamar, H.; Mehmood, K.; Zhang, L. H.; Liu, J. J.; Zhang, H.; Li, J. K. Probiotics isolated from yaks improves the growth performance, antioxidant activity, and cytokines related to immunity and inflammation in mice. Microb. Cell Fact. 2019, 18, 112.

[39]

Li, Y. X.; Watanabe, E.; Kawashima, Y.; Plichta, D. R.; Wang, Z. J.; Ujike, M.; Ang, Q. Y.; Wu, R. R.; Furuichi, M.; Takeshita, K. et al. Identification of trypsin-degrading commensals in the large intestine. Nature 2022, 609, 582–589.

[40]

Koshikawa, N.; Hasegawa, S.; Nagashima, Y.; Mitsuhashi, K.; Tsubota, Y.; Miyata, S.; Miyagi, Y.; Yasumitsu, H.; Miyazaki, K. Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am. J. Pathol. 1998, 153, 937–944.

[41]

Steinbach, E.; Masi, D.; Ribeiro, A.; Serradas, P.; Le Roy, T.; Clément, K. Upper small intestine microbiome in obesity and related metabolic disorders: A new field of investigation. Metabolism 2024, 150, 155712.

[42]
Treuting, P. M.; Valasek, M. A.; Dintzis, S. M. Upper gastrointestinal tract. In Comparative Anatomy and Histology. Treuting, P. M.; Dintzis, S. M., Eds.; Elsevier: Amsterdam, 2012; pp 155–175.
[43]
Das, P.; Majumdar, K.; Datta Gupta, S. Surgical Pathology of the Gastrointestinal System: Volume I—Gastrointestinal Tract, Springer: Singapore, 2022.
[44]

Bennett, C. M.; Guo, M.; Dharmage, S. C. HbA1c as a screening tool for detection of type 2 diabetes: A systematic review. Diabet. Med. 2007, 24, 333–343.

[45]

Sherwani, S. I.; Khan, H. A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M. K. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark. Insights 2016, 11, 95–104.

[46]

Knudsen, J. G.; Rorsman, P. β cell dysfunction in type 2 diabetes: Drained of energy. Cell Metab. 2019, 29, 1–2.

[47]

Muñoz, F.; Fex, M.; Moritz, T.; Mulder, H.; Cataldo, L. R. Unique features of β-cell metabolism are lost in type 2 diabetes. Acta Physiol. 2024, 240, e14148.

[48]

Wendt, A.; Eliasson, L. Pancreatic α-cells—The unsung heroes in islet function. Semin. Cell Dev. Biol. 2020, 103, 41–50.

[49]

Ren, C. J.; Zhong, D. N.; Qi, Y. C.; Liu, C. Y.; Liu, X. Y.; Chen, S. H.; Yan, S.; Zhou, M. Bioinspired pH-responsive microalgal hydrogels for oral insulin delivery with both hypoglycemic and insulin sensitizing effects. ACS Nano 2023, 17, 14161–14175.

[50]

Bao, X. Y.; Qian, K.; Yao, P. Oral delivery of exenatide-loaded hybrid zein nanoparticles for stable blood glucose control and β-cell repair of type 2 diabetes mice. J. Nanobiotechnology 2020, 18, 67.

[51]

Müller, T. D.; Finan, B.; Bloom, S. R.; D'Alessio, D.; Drucker, D. J.; Flatt, P. R.; Fritsche, A.; Gribble, F.; Grill, H. J.; Habener, J. F. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130.

[52]

Hamamoto, S.; Kanda, Y.; Shimoda, M.; Tatsumi, F.; Kohara, K.; Tawaramoto, K.; Hashiramoto, M.; Kaku, K. Vildagliptin preserves the mass and function of pancreatic β cells via the developmental regulation and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetes Obes. Metab. 2013, 15, 153–163.

[53]

Harrison, S. A. Liver disease in patients with diabetes mellitus. J. Clin. Gastroenterol. 2006, 40, 68–76.

[54]
Barroso, E.; Jurado-Aguilar, J.; Wahli, W.; Palomer, X.; Vázquez-Carrera, M. Increased hepatic gluconeogenesis and type 2 diabetes mellitus. Trends Endocrinol. Metab., in press, https://doi.org/10.1016/j.tem.2024.05.006.
[55]

Xu, X. G.; Cai, Y. H.; Yu, Y. F. Effects of a novel curcumin derivative on the functions of kidney in streptozotocin-induced type 2 diabetic rats. Inflammopharmacology 2018, 26, 1257–1264.

[56]

Patel, V. J.; Joharapurkar, A. A.; Shah, G. B.; Jain, M. R. Effect of GLP-1 based therapies on diabetic dyslipidemia. Curr. Diabetes Rev. 2014, 10, 238–250.

Nano Research
Article number: 94907082
Cite this article:
Wu R, Fan X, Wu L, et al. Enhanced oral drug delivery by mimicking natural amino acid and oligopeptide absorption route. Nano Research, 2025, 18(2): 94907082. https://doi.org/10.26599/NR.2025.94907082
Topics:

463

Views

123

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 July 2024
Revised: 23 September 2024
Accepted: 17 October 2024
Published: 27 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return