AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (24.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Silicon-based metal-organic frameworks (SiMOFs) for immunogenic cell death in cancer therapy

Min Han1Zishan Chen1Shiying Zhou1Zunde Liao1Xiangting Yi1Yao He3 ( )Yiling Zhong1 ( )Kam W. Leong2 ( )
College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
Show Author Information

Graphical Abstract

We engineer diverse silicon-based metal-organic frameworks (SiMOFs) with unique shapes like flower-like (SiNFs), capsule-like (SiNCs), hexagonal snowflake-like (SiNHSs), and necklace-like (SiNNs) forms using microwave-assisted synthesis. Drug-loaded SiMOFs (SiFeO) reverse the immunosuppressive tumor microenvironment (TME) and stimulate antitumor immune responses by inducing immunogenic cell death (ICD), enhancing anticancer effectiveness.

Abstract

Silicon-based nanomaterials, known for their unique properties and favorable biocompatibility, significantly impact sectors like energy, electronics, and biomedicine. Recently, metal-organic frameworks (MOFs) have emerged as promising candidates for biomedicine, characterized by adjustable chemical composition, high porosity, and biodegradability. However, the combination of silicon with MOFs to create silicon-based MOF nanostructures (SiMOFs) remains underexplored. Herein, we establish a diverse library of SiMOFs with various nanostructures, including flower-like, capsule-like, hexagonal snowflake-like, and necklace-like morphologies via microwave-assisted synthesis. These SiMOFs, with their spacious interiors, are ideal for drug delivery. They are used to load drugs and create drug-loaded SiMOFs (e.g., SiFeO). SiFeO exhibits excellent photothermal effects and high reactive oxygen species (ROS) generation capacity, enabling synergistic treatments involving chemo-chemodynamic-photothermal therapy. This approach efficiently triggers immunogenic cell death (ICD) and demonstrates excellent antitumor efficacy in vivo. Immunofluorescence staining reveals that the synergistic therapy can modulate the tumor microenvironment (TME) by reducing M2-phenotype macrophages, increasing the activation of antigen-presenting cells (APCs), enhancing the infiltration of CD4+ and CD8+ T cells, elevating Granzyme B production, and decreasing the presence of immunosuppressive regulatory T cells (Tregs). Consequently, drug-loaded SiMOFs-mediated combination therapy effectively reverses the immunosuppressive TME and activates robust antitumor immune responses by inducing ICD in tumor cells, ultimately achieving superior anticancer efficacy.

Electronic Supplementary Material

Download File(s)
7080_ESM.pdf (6.3 MB)

References

[1]

Croissant, J. G.; Butler, K. S.; Zink, J. I.; Brinker, C. J. Synthetic amorphous silica nanoparticles: Toxicity, biomedical and environmental implications. Nat. Rev. Mater. 2020, 5, 886–909.

[2]

Park, J. H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009, 8, 331–336.

[3]

Manzano, M.; Vallet-Regí, M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater. 2020, 30, 1902634.

[4]

Zhong, Y. L.; Sun, X. T.; Wang, S. Y.; Peng, F.; Bao, F.; Su, Y. Y.; Li, Y. Y.; Lee, S. T.; He, Y. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano 2015, 9, 5958–5967.

[5]

Zhong, Y. L.; Peng, F.; Bao, F.; Wang, S. Y.; Ji, X. Y.; Yang, L.; Su, Y. Y.; Lee, S. T.; He, Y. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J. Am. Chem. Soc. 2013, 135, 8350–8356.

[6]

Zhong, Y. L.; Song, B.; Shen, X. B.; Guo, D. X.; He, Y. Fluorescein sodium ligand-modified silicon nanoparticles produce ultrahigh fluorescence with robust PH- and photo-stability. Chem. Commun. 2018, 55, 365–368.

[7]

Zhong, Y. L.; Chu, B. B.; Bo, X.; He, Y.; Zhao, C. Aqueous synthesis of three-dimensional fluorescent silicon-based nanoscale networks featuring unusual anti-photobleaching properties. Chem. Commun. 2019, 55, 652–655.

[8]

Baraban, L.; Ibarlucea, B.; Baek, E.; Cuniberti, G. Hybrid silicon nanowire devices and their functional diversity. Adv. Sci. 2019, 6, 1900522.

[9]

Vallet-Regí, M.; Schüth, F.; Lozano, D.; Colilla, M.; Manzano, M. Engineering mesoporous silica nanoparticles for drug delivery: Where are we after two decades. Chem. Soc. Rev. 2022, 51, 5365–5451.

[10]

Knežević, N. Ž.; Kaluđerović, G. N. Silicon-based nanotheranostics. Nanoscale 2017, 9, 12821–12829.

[11]

Liu, S. N.; Dou, K. K.; Liu, B.; Pang, M. L.; Ma, P. A.; Lin, J. Construction of multiform hollow-structured covalent organic frameworks via a facile and universal strategy for enhanced sonodynamic cancer therapy. Angew. Chem., Int. Ed. 2023, 62, e202301831.

[12]

Peng, F.; Su, Y. Y.; Zhong, Y. L.; Fan, C. H.; Lee, S. T.; He, Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 2014, 47, 612–623.

[13]

Dasog, M.; Kehrle, J.; Rieger, B.; Veinot, J. G. C. Silicon nanocrystals and silicon-polymer hybrids: Synthesis, surface engineering, and applications. Angew. Chem., Int. Ed. 2016, 55, 2322–2339.

[14]

Gao, A. R.; Zou, N. L.; Dai, P. F.; Lu, N.; Li, T.; Wang, Y. L.; Zhao, J. L.; Mao, H. J. Signal-to-noise ratio enhancement of silicon nanowires biosensor with rolling circle amplification. Nano Lett. 2013, 13, 4123–4130.

[15]

He, Y.; Su, S.; Xu, T. T.; Zhong, Y. L.; Zapien, J. A.; Li, J.; Fan, C. H.; Lee, S. T. Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 2011, 6, 122–130.

[16]

Cheng, Y. J.; Hu, J. J.; Qin, S. Y.; Zhang, A. Q.; Zhang, X. Z. Recent advances in functional mesoporous silica-based nanoplatforms for combinational photo-chemotherapy of cancer. Biomaterials 2020, 232, 119738.

[17]

Jeong, M.; Jung, Y.; Yoon, J.; Kang, J. Y.; Lee, S. H.; Back, W.; Kim, H.; Sailor, M. J.; Kim, D.; Park, J. H. Porous silicon-based nanomedicine for simultaneous management of joint inflammation and bone erosion in rheumatoid arthritis. ACS Nano 2022, 16, 16118–16132.

[18]

Kim, B.; Sun, S.; Varner, J. A.; Howell, S. B.; Ruoslahti, E.; Sailor, M. J. Securing the payload, finding the cell, and avoiding the endosome: Peptide-targeted, fusogenic porous silicon nanoparticles for delivery of SiRNA. Adv. Mater. 2019, 31, 1902952.

[19]

Gong, W.; Chen, Z. J.; Dong, J. Q.; Liu, Y.; Cui, Y. Chiral metal-organic frameworks. Chem. Rev. 2022, 122, 9078–9144.

[20]

Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J. et al. The current status of MOF and COF applications. Angew. Chem., Int. Ed. 2021, 60, 23975–24001.

[21]

Liu, F.; Lin, L.; Zhang, Y.; Wang, Y. B.; Sheng, S.; Xu, C. N.; Tian, H. Y.; Chen, X. S. A tumor-microenvironment-activated nanozyme-mediated theranostic nanoreactor for imaging-guided combined tumor therapy. Adv. Mater. 2019, 31, 1902885.

[22]

Li, Z. L.; Lai, X. Q.; Fu, S. Q.; Ren, L.; Cai, H.; Zhang, H.; Gu, Z. W.; Ma, X. L.; Luo, K. Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency. Adv. Sci. 2022, 9, 2201734.

[23]

Wang, S. Z.; Guo, Y. X.; Zhang, X. P.; Feng, H. H.; Wu, S. Y.; Zhu, Y. X.; Jia, H. R.; Duan, Q. Y.; Hao, S. J.; Wu, F. G. Mitochondria-targeted photodynamic and mild-temperature photothermal therapy for realizing enhanced immunogenic cancer cell death via mitochondrial stress. Adv. Funct. Mater. 2023, 33, 2303328.

[24]

Banstola, A.; Poudel, K.; Kim, J. O.; Jeong, J. H.; Yook, S. Recent progress in stimuli-responsive nanosystems for inducing immunogenic cell death. J. Control. Release 2021, 337, 505–520.

[25]

Li, S. K.; Zhang, W. J.; Xing, R. R.; Yuan, C. Q.; Xue, H. D.; Yan, X. H. Supramolecular nanofibrils formed by coassembly of clinically approved drugs for tumor photothermal immunotherapy. Adv. Mater. 2021, 33, 2100595.

[26]

Wang, M.; Zhang, X. H.; Liu, B.; Liu, C.; Song, C. M.; Chen, Y.; Jin, Y. B.; Lin, J.; Huang, P.; Xing, S. J. Immunotherapeutic hydrogel with photothermal induced immunogenic cell death and STING activation for post-surgical treatment. Adv. Funct. Mater. 2023, 33, 2300199.

[27]

Ou, W. Q.; Stewart, S.; White, A.; Kwizera, E. A.; Xu, J. S.; Fang, Y. Z.; Shamul, J. G.; Xie, C. Q.; Nurudeen, S.; Tirada, N. P. et al. In situ cryo-immune engineering of tumor microenvironment with cold-responsive nanotechnology for cancer immunotherapy. Nat. Commun. 2023, 14, 392.

[28]

Lv, Y. L.; Li, F.; Wang, S.; Lu, G. H.; Bao, W. E.; Wang, Y. G.; Tian, Z. Y.; Wei, W.; Ma, G. H. Near-infrared light-triggered platelet arsenal for combined photothermal-immunotherapy against cancer. Sci. Adv. 2021, 7, eabd7614.

[29]

Li, W.; Yang, J.; Luo, L. H.; Jiang, M. S.; Qin, B.; Yin, H.; Zhu, C. Q.; Yuan, X. L.; Zhang, J. L.; Luo, Z. Y. et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019, 10, 3349.

[30]

Deng, Z.; Liu, J. W.; Xi, M.; Wang, C. J.; Fang, H. P.; Wu, X. R.; Zhang, C.; Sun, G. T.; Zhang, Y. F.; Shen, L. et al. Biogenic platinum nanoparticles on bacterial fragments for enhanced radiotherapy to boost antitumor immunity. Nano Today 2022, 47, 101656.

[31]

Xu, Y.; Guo, Y. Q.; Zhang, C. C.; Zhan, M. S.; Jia, L.; Song, S. L.; Jiang, C. J.; Shen, M. W.; Shi, X. Y. Fibronectin-coated metal-phenolic networks for cooperative tumor chemo-/chemodynamic/immune therapy via enhanced ferroptosis-mediated immunogenic cell death. ACS Nano 2022, 16, 984–996.

[32]

Yang, W. J.; Zhang, F. W.; Deng, H. Z.; Lin, L. S.; Wang, S.; Kang, F.; Yu, G. C.; Lau, J.; Tian, R.; Zhang, M. R. et al. Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy. ACS Nano 2020, 14, 620–631.

[33]

Yang, C. Z.; Wang, M.; Chang, M. Y.; Yuan, M.; Zhang, W. Y.; Tan, J.; Ding, B. B.; Ma, P. A.; Lin, J. Heterostructural nanoadjuvant CuSe/CoSe2 for potentiating ferroptosis and photoimmunotherapy through intratumoral blocked lactate efflux. J. Am. Chem. Soc. 2023, 145, 7205–7217.

[34]

Zhang, J.; Pan, Y. W.; Liu, L. J.; Xu, Y. T.; Zhao, C. C.; Liu, W.; Rao, L. Genetically edited cascade nanozymes for cancer immunotherapy. ACS Nano 2024, 18, 12295–12310.

[35]

Luo, T. K.; Fan, Y. J.; Mao, J. M.; Yuan, E.; You, E.; Xu, Z. W.; Lin, W. B. Dimensional reduction enhances photodynamic therapy of metal-organic nanophotosensitizers. J. Am. Chem. Soc. 2022, 144, 5241–5246.

[36]

Li, Z.; Chu, Z. Y.; Yang, J.; Qian, H. S.; Xu, J. M.; Chen, B. J.; Tian, T.; Chen, H.; Xu, Y. S.; Wang, F. Immunogenic cell death augmented by manganese zinc sulfide nanoparticles for metastatic melanoma immunotherapy. ACS Nano 2022, 16, 15471–15483.

[37]

Xu, W. X.; Li, D. D.; Chen, C. R.; Wang, J. X.; Wei, X. H.; Yang, X. Z. Design of mitoxantrone-loaded biomimetic nanocarrier with sequential photothermal/photodynamic/chemotherapy effect for synergized immunotherapy. Adv. Funct. Mater. 2023, 33, 2302231.

[38]

Liu, X. Y.; Zhuang, Y. P.; Huang, W.; Wu, Z. Z.; Chen, Y. J.; Shan, Q. G.; Zhang, Y. F.; Wu, Z. Y.; Ding, X. Y.; Qiu, Z. L. et al. Interventional hydrogel microsphere vaccine as an immune amplifier for activated antitumour immunity after ablation therapy. Nat. Commun. 2023, 14, 4106.

[39]

Yang, K.; Qi, S. L.; Yu, X. Y.; Bai, B.; Zhang, X. Y.; Mao, Z. W.; Huang, F. H.; Yu, G. C. A hybrid supramolecular polymeric nanomedicine for cascade-amplified synergetic cancer therapy. Angew. Chem., Int. Ed. 2022, 61, e202203786.

[40]

Wu, W. C.; Pu, Y. Y.; Zhou, B. G.; Shen, Y. C.; Gao, S.; Zhou, M.; Shi, J. L. Photoactivatable immunostimulatory nanomedicine for immunometabolic cancer therapy. J. Am. Chem. Soc. 2022, 144, 19038–19050.

[41]

Sun, M. Y.; Liu, Z. W.; Wu, L.; Yang, J.; Ren, J. S.; Qu, X. G. Bioorthogonal-activated in situ vaccine mediated by a COF-based catalytic platform for potent cancer immunotherapy. J. Am. Chem. Soc. 2023, 145, 5330–5341.

[42]

Duan, X. P.; Chan, C.; Han, W. B.; Guo, N. N.; Weichselbaum, R. R.; Lin, W. B. Immunostimulatory nanomedicines synergize with checkpoint blockade immunotherapy to eradicate colorectal tumors. Nat. Commun. 2019, 10, 1899.

[43]

Zhou, Y.; Zhang, Y. W.; Jiang, C. Q.; Chen, Y. X.; Tong, F.; Yang, X. T.; Wang, Y. Z.; Xia, X.; Gao, H. L. Rosmarinic acid-crosslinked supramolecular nanoassembly with self-regulated photodynamic and anti-metastasis properties for synergistic photoimmunotherapy. Small 2023, 19, 2300594.

[44]

Yu, L.; Yu, M.; Chen, W.; Sun, S. J.; Huang, W. X.; Wang, T. Q.; Peng, Z. W.; Luo, Z. W.; Fang, Y. X.; Li, Y. J. et al. In situ separable nanovaccines with stealthy bioadhesive capability for durable cancer immunotherapy. J. Am. Chem. Soc. 2023, 145, 8375–8388.

[45]

Liu, F.; Lin, L.; Zhang, Y.; Sheng, S.; Wang, Y. B.; Xu, C. N.; Tian, H. Y.; Chen, X. S. Two-dimensional nanosheets with high curcumin loading content for multimodal imaging-guided combined chemo-photothermal therapy. Biomaterials 2019, 223, 119470.

[46]

Zhong, Y. L.; Li, T. Y.; Zhu, Y. F.; Zhou, J.; Akinade, T. O.; Lee, J.; Liu, F.; Bhansali, D.; Lao, Y. H.; Quek, C. H. et al. Targeting proinflammatory molecules using multifunctional MnO nanoparticles to inhibit breast cancer recurrence and metastasis. ACS Nano 2022, 16, 20430–20444.

[47]

Fadus, M. C.; Lau, C.; Bikhchandani, J.; Lynch, H. T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med. 2017, 7, 339–346.

[48]

Jeon, M.; Halbert, M. V.; Stephen, Z. R.; Zhang, M. Q. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives. Adv. Mater. 2021, 33, 1906539.

[49]

Rezaei, B.; Yari, P.; Sanders, S. M.; Wang, H. T.; Chugh, V. K.; Liang, S.; Mostufa, S.; Xu, K. L.; Wang, J. P.; Gómez-Pastora, J. et al. Magnetic nanoparticles: A review on synthesis, characterization, functionalization, and biomedical applications. Small 2024, 20, 2304848.

[50]

Chang, R.; Zou, Q. L.; Zhao, L. Y.; Liu, Y. M.; Xing, R. R.; Yan, X. H. Amino-acid-encoded supramolecular photothermal nanomedicine for enhanced cancer therapy. Adv. Mater. 2022, 34, 2200139.

[51]

Hao, J, N.; Ge, K. M.; Chen, G. L.; Dai, B.; Li, Y. S. Strategies to engineer various nanocarrier-based hybrid catalysts for enhanced chemodynamic cancer therapy. Chem. Soc. Rev. 2023, 52, 7707–7736.

[52]

Zou, Q. L.; Abbas, M.; Zhao, L. Y.; Li, S. K.; Shen, G. Z.; Yan, X. H. Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc. 2017, 139, 1921–1927.

[53]

Guo, Y. X.; Wang, S. Z.; Zhang, X. P.; Jia, H. R.; Zhu, Y. X.; Zhang, X. D.; Gao, G.; Jiang, Y. W.; Li, C. C.; Chen, X. K. et al. In situ generation of micrometer-sized tumor cell-derived vesicles as autologous cancer vaccines for boosting systemic immune responses. Nat. Commun. 2022, 13, 6534.

[54]

Yu, J. F.; Zhou, B. G.; Zhang, S.; Yin, H. H.; Sun, L. P.; Pu, Y. Y.; Zhou, B. Y.; Sun, Y. K.; Li, X. L.; Fang, Y. et al. Design of a self-driven probiotic-CRISPR/Cas9 nanosystem for sono-immunometabolic cancer therapy. Nat. Commun. 2022, 13, 7903.

[55]

Qiao, G. X.; Li, S. L.; Pan, X. M.; Xie, P.; Peng, R. X.; Huang, X. R.; He, M. Y.; Jiang, J. H.; Chu, X. Surgical tumor-derived nanoplatform targets tumor-associated macrophage for personalized postsurgical cancer immunotherapy. Sci. Adv. 2024, 10, eadk7955.

[56]

Ren, L.; Lim, Y. T. Degradation-regulatable architectured implantable macroporous scaffold for the spatiotemporal modulation of immunosuppressive microenvironment and enhanced combination cancer immunotherapy. Adv. Funct. Mater. 2018, 28, 1804490.

[57]

Steenbrugge, J.; Bellemans, J.; Elst, N. V.; Demeyere, K.; de Vliegher, J.; Perera, T.; de Wever, O.; van den Broeck, W.; de Spiegelaere, W.; Sanders, N. N. et al. One cisplatin dose provides durable stimulation of anti-tumor immunity and alleviates anti-PD-1 resistance in an intraductal model for triple-negative breast cancer. OncoImmunology 2022, 11, 2103277.

[58]

Liu, X. L.; Chen, Y. J.; Fu, Y.; Jiang, D. X.; Gao, F. Y.; Tang, Z. J.; Bian, X. F.; Wu, S.; Yu, Y.; Wang, X. Y. et al. Breaking spatiotemporal barriers of immunogenic chemotherapy via an endoplasmic reticulum membrane-assisted liposomal drug delivery. ACS Nano 2023, 17, 10521–10534.

[59]

Gao, C.; Wang, Q. F.; Li, J. Y.; Kwong, C. H. T.; Wei, J. W.; Xie, B. B.; Lu, S. Y.; Lee, S. M. Y.; Wang, R. B. In vivo hitchhiking of immune cells by intracellular self-assembly of bacteria-mimetic nanomedicine for targeted therapy of melanoma. Sci. Adv. 2022, 8, eabn1805.

[60]

Wang, Y.; Gao, D.; Jin, L.; Ren, X. C.; Ouyang, Y. A.; Zhou, Y.; He, X. Y.; Jia, L. L.; Tian, Z. M.; Wu, D. C. et al. NADPH selective depletion nanomedicine-mediated radio-immunometabolism regulation for strengthening Anti-PDL1 therapy against TNBC. Adv. Sci. 2023, 10, 2203788.

[61]

Liu, D.; Liang, S.; Ma, K. S.; Meng, Q. F.; Li, X. G.; Wei, J.; Zhou, M. L.; Yun, K. Q.; Pan, Y. W.; Rao, L. et al. Tumor microenvironment-responsive nanoparticles amplifying STING signaling pathway for cancer immunotherapy. Adv. Mater. 2024, 36, 2304845.

[62]

Haabeth, O. A. W.; Blake, T. R.; McKinlay, C. J.; Tveita, A. A.; Sallets, A.; Waymouth, R. M.; Wender, P. A.; Levy, R. Local delivery of OX40L, CD80, and CD86 MRNA kindles global anticancer immunity. Cancer Res. 2019, 79, 1624–1634.

[63]

Tekguc, M.; Wing, J. B.; Osaki, M.; Long, J.; Sakaguchi, S. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc. Natl. Acad. Sci. USA 2021, 118, e2023739118.

[64]

Jiang, Y.; Krishnan, N.; Zhou, J. R.; Chekuri, S.; Wei, X. L.; Kroll, A. V.; Yu, C. L.; Duan, Y. O.; Gao, W. W.; Fang, R. H. et al. Engineered cell-membrane-coated nanoparticles directly present tumor antigens to promote anticancer immunity. Adv. Mater. 2020, 32, 2001808.

[65]

Yong, S. B.; Chung, J. Y.; Song, Y.; Kim, J.; Ra, S.; Kim, Y. H. Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells. Biomaterials 2019, 219, 119401.

Nano Research
Article number: 94907080
Cite this article:
Han M, Chen Z, Zhou S, et al. Silicon-based metal-organic frameworks (SiMOFs) for immunogenic cell death in cancer therapy. Nano Research, 2025, 18(1): 94907080. https://doi.org/10.26599/NR.2025.94907080
Topics:

547

Views

95

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 July 2024
Revised: 14 October 2024
Accepted: 17 October 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return