AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication | Open Access

PtCu dendroframe octahedrons: Enhancing peroxidase-like activity and antibacterial efficiency through structural evolution

Ri Feng§Jiuyi Hu§Liangjun WangJiayu XuJiajia LiZeeshan AhmadShaohui ZhengMuhammad Farhan FaridWenjing Liu ( )Faisal Saleem ( )
Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China

§ Ri Feng and Jiuyi Hu contributed equally to this work.

Show Author Information

Graphical Abstract

This work explores the synthesis and utilization of novel PtCu dendroframe octahedrons, with a specific emphasis on their peroxidase-like properties and their potential as antibacterial agents.

Abstract

Nanozymes, which possess enzyme-like catalytic activity, are attractive alternatives to natural enzymes. Their activity is largely dependent on the structure of the material. However, challenges remain in optimizing the structure–activity relationship. This work explores the synthesis and utilization of PtCu nanostructures (NSs), focusing on their peroxidase (POD)-like properties and their potential as antibacterial agents. We developed PtCu dendrites that transform into unique dendroframe octahedrons (DFOs) and subsequently stabilize into solid octahedrons with unusual growth behaviour. The intermediate DFO, showed higher POD-like activity in comparison to other shapes of PtCu NSs. The DFOs also have the better ability to consume glutathione, thus enhancing their sterilization effect. Furthermore, we demonstrate the effectiveness of these PtCu DFOs as powerful antibacterial agents. This work provides valuable information on shape dependent activities of PtCu NSs in the field of biomedicine.

Electronic Supplementary Material

Download File(s)
7064_ESM.pdf (2.4 MB)

References

[1]

Sanz-García, F.; Gil-Gil, T.; Laborda, P.; Blanco, P.; Ochoa-Sánchez, L. E.; Baquero, F.; Martínez, J. L.; Hernando-Amado, S. Translating eco-evolutionary biology into therapy to tackle antibiotic resistance. Nat. Rev. Microbiol. 2023, 21, 671–685.

[2]

Liu, Y.; Tong, Z. W.; Shi, J. R.; Li, R. C.; Upton, M.; Wang, Z. Q. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics 2021, 11, 4910–4928.

[3]

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

[4]

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

[5]

Sang, X. Q.; Xia, S. Y.; Cheng, L.; Wu, F. X.; Tian, Y.; Guo, C. X.; Xu, G. B.; Yuan, Y. L.; Niu, W. X. Deciphering the mechanisms of photo-enhanced catalytic activities in plasmonic Pd–Au heteromeric nanozymes for colorimetric analysis. Small 2024, 20, 2305369.

[6]

Fan, L.; Xu, X. D.; Zhu, C. H.; Han, J.; Gao, L. Z.; Xi, J. Q.; Guo, R. Tumor catalytic-photothermal therapy with yolk–shell gold@carbon nanozymes. ACS Appl. Mater. Interfaces 2018, 10, 4502–4511.

[7]

Xi, Z.; Cheng, X.; Gao, Z. Q.; Wang, M. J.; Cai, T.; Muzzio, M.; Davidson, E.; Chen, O.; Jung, Y.; Sun, S. H. et al. Strain effect in palladium nanostructures as nanozymes. Nano Lett. 2020, 20, 272–277.

[8]

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[9]

Zhang, Y. J.; Gao, W. H.; Ma, Y. N.; Cheng, L. L.; Zhang, L.; Liu, Q. G.; Chen, J. Y.; Zhao, Y. R.; Tu, K. S.; Zhang, M. Z. et al. Integrating Pt nanoparticles with carbon nanodots to achieve robust cascade superoxide dismutase-catalase nanozyme for antioxidant therapy. Nano Today 2023, 49, 101768.

[10]

Fang, G.; Li, W. F.; Shen, X. M.; Perez-Aguilar, J. M.; Chong, Y.; Gao, X. F.; Chai, Z. F.; Chen, C. Y.; Ge, C. C.; Zhou, R. H. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat. Commun. 2018, 9, 129.

[11]

Hu, W. C.; Younis, M. R.; Zhou, Y.; Wang, C.; Xia, X. H. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small 2020, 16, 2000553.

[12]

Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

[13]

Cai, S. F.; Jia, X. H.; Han, Q. S.; Yan, X. Y.; Yang, R.; Wang, C. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Res. 2017, 10, 2056–2069.

[14]

Zhu, Y. L.; Wang, Z.; Zhao, R. X.; Zhou, Y. H.; Feng, L. L.; Gai, S. L.; Yang, P. P. Pt decorated Ti3C2T x MXene with NIR-II light amplified nanozyme catalytic activity for efficient phototheranostics. ACS Nano 2022, 16, 3105–3118.

[15]

Wang, D. D.; Zhang, L.; Wang, C. L.; Cheng, Z. Y.; Zheng, W.; Xu, P. P.; Chen, Q. W.; Zhao, Y. L. Missing-linker-confined single-atomic Pt nanozymes for enzymatic theranostics of tumor. Angew. Chem., Int. Ed. 2023, 62, e202217995.

[16]

He, W. Y.; Wu, J. H.; Liu, J. L.; Li, J. Single-atom nanozymes for catalytic therapy: Recent advances and challenges. Adv. Funct. Mater. 2024, 34, 2312116.

[17]

Khan, A. R.; Al Mamun, M. S.; Ara, M. H. Review on platinum nanoparticles: Synthesis, characterization, and applications. Microchem. J. 2021, 171, 106840.

[18]

Xiao, J. Y.; Hai, L.; Li, Y. Y.; Li, H.; Gong, M. H.; Wang, Z. F.; Tang, Z. F.; Deng, L.; He, D. G. An ultrasmall Fe3O4-decorated polydopamine hybrid nanozyme enables continuous conversion of oxygen into toxic hydroxyl radical via GSH-depleted cascade redox reactions for intensive wound disinfection. Small 2022, 18, 2105465.

[19]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[20]

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

[21]

Kim, H. Y.; Kwon, T.; Ha, Y.; Jun, M.; Baik, H.; Jeong, H. Y.; Kim, H.; Lee, K.; Joo, S. H. Intermetallic PtCu nanoframes as efficient oxygen reduction electrocatalysts. Nano Lett. 2020, 20, 7413–7421.

[22]

Wang, K.; Xu, L. K.; Wang, J.; Zhang, S. J.; Wang, Y. L.; Yang, N. L.; Du, J.; Wang, D. Smart heat isolator with hollow multishelled structures. Green Energy Environ. 2023, 8, 1154–1160.

[23]

Chen, X. B.; Li, P.; Wang, J.; Wan, J. W.; Yang, N. L.; Xu, B.; Tong, L. M.; Gu, L.; Du, J.; Lin, J. J. et al. Multishelled CuO/Cu2O induced fast photo-vapour generation for drinking water. Nano Res. 2022, 15, 4117–4123.

[24]

Kang, Y. Q.; Wang, J. Q.; Wei, Y. P.; Wu, Y. L.; Xia, D. S.; Gan, L. Engineering nanoporous and solid core–shell architectures of low-platinum alloy catalysts for high power density PEM fuel cells. Nano Res. 2022, 15, 6148–6155.

[25]

Liu, Y.; Qing, Y. L.; Jing, L. C.; Zou, W. T.; Guo, R. Platinum-copper bimetallic colloid nanoparticle cluster nanozymes with multiple enzyme-like activities for scavenging reactive oxygen species. Langmuir 2021, 37, 7364–7372.

[26]

Zhong, X. Y.; Wang, X. W.; Cheng, L.; Tang, Y. A.; Zhan, G. T.; Gong, F.; Zhang, R.; Hu, J.; Liu, Z.; Yang, X. L. GSH-depleted PtCu3 nanocages for chemodynamic-enhanced sonodynamic cancer therapy. Adv. Funct. Mater. 2020, 30, 1907954.

[27]

Wang, W. Q.; Cui, Y. Y.; Wei, X. L.; Zang, Y.; Chen, X. L.; Cheng, L.; Wang, X. W. CuCo2O4 nanoflowers with multiple enzyme activities for treating bacterium-infected wounds via cuproptosis-like death. ACS Nano 2024, 18, 15845–15863.

[28]

Yao, H.; Zhou, R. X.; Wang, J. M.; Wei, Y. B.; Li, S. H.; Zhang, Z. X.; Du, X. D.; Wu, S. X.; Shi, J. J. Pathogen-targeting bimetallic nanozymes as ultrasonic-augmented ROS generator against multidrug resistant bacterial infection. Adv. Healthc. Mater. 2023, 12, 2300449.

[29]

Zhang, J. M.; Chen, Y.; Zhang, X. J.; Fang, Y. J.; Gao, Y.; Zhao, J.; Xu, X. C.; Xiao, H.; Zhao, M.; Hu, T. J. et al. Au-doped PtCu2 nanonetworks with interface-rich for enhancing methanol electro-oxidation performance. Int. J. Hydrogen Energy 2024, 71, 14–22.

[30]

Gong, M. X.; Xiao, D. D.; Deng, Z. P.; Zhang, R.; Xia, W. W.; Zhao, T. H.; Liu, X. P.; Shen, T.; Hu, Y. Z.; Lu, Y. et al. Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Appl. Catal. B: Environ. 2021, 282, 119617.

[31]

Ren, J.; Han, F. Z.; Guo, W. B.; Wang, Q. C.; Cao, Y.; Li, S. B.; Li, G. P.; Ali, M.; Hu, J. N.; Yuan, F. S. et al. Lattice distortion of a (0001) twin constrained by grain boundaries in a p-type (Bi, Sb)2Te3 alloy during three point bending deformation. Mater. Charact. 2024, 207, 113532.

[32]

Wei, N.; Li, X. Y.; Yin, H. J.; Sun, Y. Y.; Jia, H. M.; Guan, H. J.; Gao, Y. H. Uniformly embedded PtCu alloy nanoparticles on mesoporous carbon nanospheres: A high-efficiency nanozyme for glucose detection. J. Mater. Sci. 2023, 58, 5244–5257.

[33]

Tang, Y. J.; Chen, Y. J.; Wu, Y.; Xu, W. Q.; Luo, Z.; Ye, H. R.; Gu, W. L.; Song, W. Y.; Guo, S. J.; Zhu, C. Z. High-indexed intermetallic Pt3Sn nanozymes with high activity and specificity for sensitive immunoassay. Nano Lett. 2023, 23, 267–275.

[34]

Gan, L.; Cui, C. H.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 2014, 346, 1502–1506.

[35]

Lin, X.; Zhang, X. R.; Wang, Z.; Zhu, X. X.; Zhu, J. H.; Chen, P. S.; Lyu, T. Y.; Li, C. Z.; Tian, Z. Q.; Shen, P. K. Hyperbranched concave octahedron of PtIrCu nanocrystals with high-index facets for efficiently electrochemical ammonia oxidation reaction. J. Colloid Interface Sci. 2021, 601, 1–11.

[36]
Ming, S. Y.; Cobb, S. J.; Rahaman, M.; Sammy, N.; Reisner, E.; Wheatley, A. E. H. Anisotropic heterobimetallic nanomaterials with controlled composition for efficient oxygen reduction at ultralow loading. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202411006.
[37]

Ai, Y. J.; He, M. Q.; Sun, H.; Jia, X. M.; Wu, L.; Zhang, X. Y.; Sun, H. B.; Liang, Q. L. Ultra-small high-entropy alloy nanoparticles: Efficient nanozyme for enhancing tumor photothermal therapy. Adv. Mater. 2023, 35, 2302335.

[38]

Ge, C. C.; Wu, R. F.; Chong, Y.; Fang, G.; Jiang, X. M.; Pan, Y.; Chen, C. Y.; Yin, J. J. Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: Implication for wound healing. Adv. Funct. Mater. 2018, 28, 1801484.

[39]

Zhao, D. C.; Yang, N. L.; Xu, L. K.; Du, J.; Yang, Y.; Wang, D. Hollow structures as drug carriers: Recognition, response, and release. Nano Res. 2022, 15, 739–757.

[40]
Zhang, H.; Lu, Y.; Zhang, R.; Tang, Z.; Lam, S. H.; Zhu, J. J.; Fu, R. F.; Hu, Y. T.; Iqbal, M. Z.; Kong, X. D. et al. Synthesis of multifunctional plasmonic nanodarts through one-end deposition on gold nanobipyramids for tumor organoid ablation and antimicrobial applications. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202405588.
Nano Research
Article number: 94907064
Cite this article:
Feng R, Hu J, Wang L, et al. PtCu dendroframe octahedrons: Enhancing peroxidase-like activity and antibacterial efficiency through structural evolution. Nano Research, 2025, 18(1): 94907064. https://doi.org/10.26599/NR.2025.94907064
Topics:

1067

Views

324

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 August 2024
Revised: 26 September 2024
Accepted: 02 October 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return