Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Vision systems in vertebrates have evolved energy-efficient and adaptable features in hyperpolarizing photoreceptors that machine vision struggles to mimic. Because semiconducting materials always exhibit a photoconductive effect, attempts to mimic hyperpolarizing photoreceptors have proven to be non-trivial. Sophisticated two-dimensional (2D) material based van der Waals heterostructures and other novel structures/materials pose fabrication and integration challenges. This work aims to address the issue by successfully harnessing the defect dynamics in a ubiquitous transition metal oxide (TMO) hafnia to present, for the first time, a photosensor with characteristics closely resembling those of hyperpolarizing photoreceptors, including on-the-fly adaptation to constant and changing illumination, all in just a single ultrathin (5 nm) layer. This work opens a new prospect for accelerating the development of biomimetic vision systems, given the integral role TMOs have already played in mainstream semiconductor technology.
Mennel, L.; Symonowicz, J.; Wachter, S.; Polyushkin, D. K.; Molina-Mendoza, A. J.; Mueller, T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020, 579, 62–66.
Choi, C.; Choi, M. K.; Liu, S. Y.; Kim, M.; Park, O. K.; Im, C.; Kim, J.; Qin, X. L.; Lee, G. J.; Cho, K. W. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 2017, 8, 1664.
Chen, J. W.; Zhou, Z.; Kim, B. J.; Zhou, Y.; Wang, Z. Q.; Wan, T. Q.; Yan, J. M.; Kang, J. F.; Ahn, J. H.; Chai, Y. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 2023, 18, 882–888.
Tan, H. W.; van Dijken, S. Dynamic machine vision with retinomorphic photomemristor-reservoir computing. Nat. Commun. 2023, 14, 2169.
Wen, W.; Liu, G. C.; Wei, X. F.; Huang, H. J.; Wang, C.; Zhu, D. L.; Sun, J. Z.; Yan, H. J.; Huang, X.; Shi, W. K. et al. Biomimetic nanocluster photoreceptors for adaptative circular polarization vision. Nat. Commun. 2024, 15, 2397.
Schnapf, J. L.; Baylor, D. A. How photoreceptor cells respond to light. Sci. Am. 1987, 256, 40–47.
Rotov, A. Y.; Astakhova, L. A.; Firsov, M. L.; Govardovskii, V. I. Light adaptation of retinal rods, adaptation memory, and afterimages. Neurosci. Behav. Physiol. 2021, 51, 116–122.
Fain, G. L.; Matthews, H. R.; Cornwall, M. C.; Koutalos, Y. Adaptation in vertebrate photoreceptors. Physiol. Rev. 2001, 81, 117–151.
del Pilar Gomez, M.; Nasi, E. Light adaptation in pecten hyperpolarizing photoreceptors: Insensitivity to calcium manipulations. J. Gen. Physiol. 1997, 109, 371–384.
Nakatani, K.; Yau, K. W. Calcium and light adaptation in retinal rods and cones. Nature 1988, 334, 69–71.
Matthews, H. R.; Murphy, R. L. W.; Fain, G. L.; Lamb, T. D. Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration. Nature 1988, 334, 67–69.
Torre, V.; Matthews, H. R.; Lamb, T. D. Role of calcium in regulating the cyclic GMP cascade of phototransduction in retinal rods. Proc. Natl. Acad. Sci. USA 1986, 83, 7109–7113.
Matthews, H. R. Incorporation of chelator into guinea-pig rods shows that calcium mediates mammalian photoreceptor light adaptation. J. Physiol. 1991, 436, 93–105.
Wang, C. Y.; Liang, S. J.; Wang, S.; Wang, P. F.; Li, Z. A.; Wang, Z. R.; Gao, A. Y.; Pan, C.; Liu, C.; Liu, J. et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 2020, 6, eaba6173.
Chen, Y. B.; Jin, H. N.; Yin, T. T.; Wan, R.; Ma, P. F.; Zhang, L. W.; Chen, Z. Y.; Ma, Y. N.; Li, H. X.; Zhang, X. H. et al. A large inverse photoconductance based on an asymmetric van der waals Bi-heterostructure. Nano Energy 2022, 103, 107770.
Pang, X. C.; Wang, Y.; Zhu, Y. Y.; Zhang, Z. H.; Xiang, D.; Ge, X.; Wu, H. Q.; Jiang, Y. B.; Liu, Z. Z.; Liu, X. X. et al. Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition. Nat. Commun. 2024, 15, 1613.
Zhou, G. D.; Li, J.; Song, Q. L.; Wang, L. D.; Ren, Z. J.; Sun, B.; Hu, X. F.; Wang, W. H.; Xu, G. B.; Chen, X. D. et al. Full hardware implementation of neuromorphic visual system based on multimodal optoelectronic resistive memory arrays for versatile image processing. Nat. Commun. 2023, 14, 8489.
Ou, Z. W.; Wang, T.; Tang, J. B.; Zong, X. R.; Wang, W.; Guo, Q. B.; Xu, Y. H.; Zhu, C.; Wang, L.; Huang, W. et al. Enabling and controlling negative photoconductance of FePS3 nanosheets by hot carrier trapping. Adv. Opt. Mater. 2020, 8, 2000201.
Sistani, M.; Böckle, R.; Bartmann, M. G.; Lugstein, A.; Weber, W. M. Bias-switchable photoconductance in a nanoscale Ge photodetector operated in the negative differential resistance regime. ACS Photonics 2021, 8, 3469–3475.
Lv, B. C.; Hu, Q. Q.; Wang, P. F.; Zhu, J. L.; Ma, W. Y.; Dong, Z. M.; Cao, Y.; Sun, J. L. Growth mechanism and photoelectric properties of a silver nanowire network prepared by solid state ionics method. Nanotechnology 2020, 31, 455201.
John, J. W.; Dhyani, V.; Georgiev, Y. M.; Gangnaik, A. S.; Biswas, S.; Holmes, J. D.; Das, A. K.; Ray, S. K.; Das, S. Ultrahigh negative infrared photoconductance in highly As-doped germanium nanowires induced by hot electron trapping. ACS Appl. Electron. Mater. 2020, 2, 1934–1942.
Wang, R.; Wang, J. L.; Liu, T.; He, Z.; Wang, H.; Liu, J. W.; Yu, S. H. Controllable inverse photoconductance in semiconducting nanowire films. Adv. Mater. 2022, 34, 2204698.
Xu, B. Y.; Guo, D.; Dong, W. K.; Gao, H. Y.; Zhu, P.; Wang, Z. W.; Watanabe, K.; Taniguchi, T.; Luo, Z. C.; Zheng, F. W. et al. Gap state-modulated van der waals short-term memory with broad band negative photoconductance. Small 2024, 20, 2309626.
Lai, H. J.; Zhou, Y.; Zhou, H. B.; Zhang, N.; Ding, X. D.; Liu, P. Y.; Wang, X. M.; Xie, W. G. Photoinduced multi-bit nonvolatile memory based on a van der Waals heterostructure with a 2D-perovskite floating gate. Adv. Mater. 2022, 34, 2110278.
Rehman, S.; Khan, M. A.; Kim, H.; Patil, H.; Aziz, J.; Kadam, K. D.; Rehman, M. A.; Rabeel, M.; Hao, A. Z.; Khan, K. et al. Optically reconfigurable complementary logic gates enabled by bipolar photoresponse in gallium selenide memtransistor. Adv. Sci. 2023, 10, 2205383.
Lian, Y. L.; Han, J. Y.; Yang, M.; Peng, S. L.; Zhang, C. Y.; Han, C.; Zhang, X. C.; Liu, X. C.; Zhou, H. X.; Wang, Y. et al. Tunable Bi-directional photoresponse in hybrid PtSe2– x thin films based on precisely controllable selenization engineering. Adv. Funct. Mater. 2022, 32, 2205709.
Rao, M. Y.; Tang, H.; Wu, J. B.; Song, W. H.; Zhang, M.; Yin, W. B.; Zhuo, Y.; Kiani, F.; Chen, B.; Jiang, X. Q. et al. Thousands of conductance levels in memristors integrated on CMOS. Nature 2023, 615, 823–829.
Zhang, T.; Hu, M. J.; Mia, M. Z. A.; Zhang, H.; Mao, W.; Fukutani, K.; Matsuzaki, H.; Wen, L. Z.; Wang, C.; Zhao, H. B. et al. Self-sensitizable neuromorphic device based on adaptive hydrogen gradient. Matter 2024, 7, 1799–1816.
Zhang, H. T.; Park, T. J.; Islam, A. N. M. N.; Tran, D. S. J.; Manna, S.; Wang, Q.; Mondal, S.; Yu, H. M.; Banik, S.; Cheng, S. B. et al. Reconfigurable perovskite nickelate electronics for artificial intelligence. Science 2022, 375, 533–539.
Chowdhury, M. D. H.; Migliorato, P.; Jang, J. Light induced instabilities in amorphous indium-gallium-zinc-oxide thin-film transistors. Appl. Phys. Lett. 2010, 97, 173506.
Hassan, M. Y.; Ang, D. S. On-demand visible-light sensing with optical memory capabilities based on an electrical-breakdown-triggered negative photoconductivity effect in the ubiquitous transparent hafnia. ACS Appl. Mater. Interfaces 2019, 11, 42339–42348.
Kalaga, P. S.; Kumar, D.; Ang, D. S.; Tsakadze, Z. Highly transparent ITO/HfO2/ITO device for visible-light sensing. IEEE Access 2020, 8, 91648–91652.
Masland, R. H. The fundamental plan of the retina. Nat. Neurosci. 2001, 4, 877–886.
Baylor, D. A. Photoreceptor signals and vision. proctor lecture. Invest. Ophthalmol. Vis. Sci. 1987, 28, 34–49.
Nunn, B. J.; Schnapf, J. L.; Baylor, D. A. Spectral sensitivity of single cones in the retina of Macaca fascicularis. Nature 1984, 309, 264–266.
Baylor, D. A.; Nunn, B. J.; Schnapf, J. L. The photocurrent, noise and spectral sensitivity of rods of the monkey macaca fascicularis. J. Physiol. 1984, 357, 575–607.
Kim, S.; Park, J.; Kim, T. H.; Hong, K.; Hwang, Y.; Park, B. G.; Kim, H. 4-bit multilevel operation in overshoot suppressed Al2O3/TiO x resistive random-access memory crossbar array. Adv. Intell. Syst. 2022, 4, 2100273.
Woo, J.; Moon, K.; Song, J.; Lee, S.; Kwak, M.; Park, J.; Hwang, H. Improved synaptic behavior under identical pulses using AlO x /HfO2 bilayer RRAM array for neuromorphic systems. IEEE Electron Device Lett. 2016, 37, 994–997.
Zhou, Y.; Ang, D. S.; Kalaga, P. S. Optically reversible electrical soft-breakdown in wide-bandgap oxides-a factorial study. J. Appl. Phys. 2018, 123, 161555.
Zhang, H. Z.; Ju, X.; Yew, K. S.; Ang, D. S. Implementation of simple but powerful trilayer oxide-based artificial synapses with a tailored bio-synapse-like structure. ACS Appl. Mater. Interfaces 2020, 12, 1036–1045.
Kumar, D.; Kalaga, P. S.; Ang, D. S. Visible light detection and memory capabilities in MgO/HfO2 bilayer-based transparent structure for photograph sensing. IEEE Trans. Electron Devices 2020, 67, 4274–4280.
Strand, J.; Kaviani, M.; Gao, D.; El-Sayed, A. M.; Afanas’ev, V. V.; Shluger, A. L. Intrinsic charge trapping in amorphous oxide films: Status and challenges. J. Phys.: Condens. Matter 2018, 30, 233001.
Gao, D. Z.; El-Sayed, A. M.; Shluger, A. L. A mechanism for frenkel defect creation in amorphous SiO2 facilitated by electron injection. Nanotechnology 2016, 27, 505207.
Cao, J.; Zhang, X. M.; Cheng, H. F.; Qiu, J.; Liu, X. S.; Wang, M.; Liu, Q. Emerging dynamic memristors for neuromorphic reservoir computing. Nanoscale 2022, 14, 289–298.
Weinstein, G. W.; Hobson, R. R.; Dowling, J. E. Light and dark adaptation in the isolated rat retina. Nature 1967, 215, 134–138.
Zhang, H. Z.; Li, J. Y.; Ju, X.; Jiang, J.; Wu, J.; Chi, D. Z.; Ang, D. S.; Hu, W.; Wei, R. S.; Zhu, M. M. et al. Highly textured CMOS-compatible hexagonal boron nitride-based neuristor for reservoir computing. Chem. Eng. J. 2024, 498, 155651.
Gorelick, L.; Blank, M.; Shechtman, E.; Irani, M.; Basri, R. Actions as space-time shapes. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 2247–2253.
374
Views
98
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).