AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Construction of Ni single-atom coordinated with doped N and S elements for mild hydrogenation of methyl acrylate to methyl propionate

Taolue Sun1,3Chen Jian1Gang Wang1Hui Zhao1Guoliang Zhang1,3,4Zengxi Li1,2 ( )Chunshan Li1,3 ( )
State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Huizhou Institute of Green Energy and Advanced Materials, Huizhou 516081, China
Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516081, China
Show Author Information

Graphical Abstract

The Ni single-atom catalyst coordinated with N and S (Ni-NSC) was prepared through the pyrolysis of ionic liquid-nickel complex at 600 °C.

Abstract

Although the nickel-based catalyst is able to exhibit comparative catalytic activity to noble metal for methyl acrylate hydrogenation, it requires strict reaction condition, which can be improved by regulation of coordination environment. In this study, we constructed a kind of Ni single-atom coordinated with N and S (Ni-NSC) through the pyrolysis of organic Ni-based precursors at 600 °C. The existence and fine structure of Ni single-atom were confirmed by the spherical electron microscopic observation in combination with the X-ray absorption spectroscopy (XAS) characterization. In addition, the catalytic hydrogenation assessment suggested that the as-prepared Ni-NSC catalyst exhibited higher activity and stability than the Ni/NSC supported catalyst prepared by incipient wetness impregnation method. This remarkable catalytic activity was due to the high dispersion and density of Ni single-atom and weak adsorption energy of intermediates on these Ni sites.

Electronic Supplementary Material

Download File(s)
7053_ESM.pdf (901 KB)

References

[1]

Chen, Z.; Wu, D. D. Novel route for the synthesis of methyl propionate from 3-pentanone with dimethyl carbonate over solid bases. Ind. Eng. Chem. Res. 2011, 50, 12343–12348.

[2]

Ai, M. Formation of methyl methacrylate from methyl propionate and methanol. Catal. Today 2006, 111, 398–402.

[3]

Wu, D. D.; Chen, Z.; Li, S. D.; Jia, Z. B. Synthesis of methyl propionate from dimethyl carbonate and 3-pentanone over solid base catalyst. Petrochem. Technol. 2009, 38, 423–427.

[4]

Aloui, A.; Delbecq, F.; De Bellefon, C.; Sautet, P. Understanding the influence of hydrogen pressure on the enantioselectivity of hydrogenation: A combined theory–experiment approach. J. Organomet. Chem. 2017, 836–837, 90–99.

[5]

Girvin, Z. C.; Lampkin, P. P.; Liu, X. Y.; Gellman, S. H. Catalytic intramolecular conjugate additions of aldehyde-derived enamines to α,β-unsaturated esters. Org. Lett. 2020, 22, 4568–4573.

[6]

Hong, Z. Studies on catalyzed hydrogenation of olefins by palladium(II) complexes with polyfunctional(P,N,O) phosphine ligands. J. Mol. Cata. 2001, 15, 451–453.

[7]

Toshima, N.; Shiraishi, Y.; Shiotsuki, A.; Ikenaga, D.; Wang, Y. Novel synthesis, structure and catalysis of inverted core/shell structured Pd/Pt bimetallic nanoclusters. Eur. Phys. J. D 2001, 16, 209–212.

[8]

Shiraishi, Y.; Nakayama, M.; Takagi, E.; Tominaga, T.; Toshima, N. Effect of quantity of polymer on catalysis and superstructure size of polymer-protected Pt nanoclusters. Inorg. Chimi. Acta 2000, 300–302, 964–969.

[9]

Matsushita, T.; Shiraishi, Y.; Horiuchi, S.; Toshima, N. Synthesis and catalysis of polymer-protected Pd/Ag/Rh trimetallic nanoparticles with a core–shell structure. Bull. Chem. Soc. Jpn. 2007, 80, 1217–1225.

[10]

van der Zon, M.; Hamersma, P. J.; Poels, E. K.; Bliek, A. Gas–solid adhesion and solid–solid agglomeration of carbon supported catalysts in three phase slurry reactors. Catal. Today 1999, 48, 131–138.

[11]

Chen, C. F.; Sun, J. T.; Li, H.; He, B. L. Studies on the hydrogenation of methyl acrylate catalyzed by Pd/DVB crosslinked poly-(n-vinyl pyrrolidone). Chin. J. Poly. Sci. 1990, 8, 295–301.

[12]

Sun, T. L.; Wu, Z. Y.; Wang, G.; Li, Z. X.; Li, C. S.; Wang, E. Q. Efficient promotional effects of Mo on the catalytic hydrogenation of methyl acrylate over Ni-based catalysts under mild conditions. Ind. Eng. Chem. Res. 2022, 61, 152–163.

[13]

Sun, T. L.; Wang, G.; Guo, X. P.; Li, Z. X.; Wang, E. Q.; Li, C. S. A highly active NiMoAl catalyst prepared by a solvothermal method for the hydrogenation of methyl acrylate. Catalysts 2022, 12, 1118.

[14]

Liu, W. G.; Chen, Y. J.; Qi, H. F.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.;Wang, W. T.; Liu, C. G. et al. A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew. Chem., Int. Ed 2018, 57, 7071–7075.

[15]

Dai, X. Y.; Chen, Z.; Yao, T.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Wei, S. Q. et al. Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chem. Commun. 2017, 53, 11568–11571.

[16]

Guo, J. Y.; Shang, W. Z.; Hu, J. W.; Xin, C. C.; Cheng, X. S.; Wei, J. Z.; Zhu, C.; Liu, W.; Shi, Y. T. Synergistically enhanced single-atom nickel catalysis for alkaline hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2022, 14, 29822–29831.

[17]

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

[18]

Yuan, Q.; Li, Y. Y.; Yu, P. P.; Ma, B. Y.; Xu, L.; Sun, Q. T.; Yang, H.; Xie, M.; Cheng, T. Reaction mechanism on Ni-C2-NS single-atom catalysis for the efficient CO2 reduction reaction. J. Exp. Nanosci. 2021, 16, 255–264.

[19]

Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

[20]

Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. G. et al. Fe isolated single atoms on S,N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

[21]

Qu, M.; Chen, Z.; Sun, Z. Y.; Zhou, D. N.; Xu, W. J.; Tang, H.; Gu, H. F.; Liang, T.; Hu, P. F.; Li, G. W. et al. Rational design of asymmetric atomic Ni-P1N3 active sites for promoting electrochemical CO2 reduction. Nano Res. 2023, 16, 2170–2176.

[22]

Zhao, S. Y.; Cheng, Y.; Veder, J. P.; Johannessen, B.; Saunders, M.; Zhang, L. J.; Liu, C.; Chisholm, M. F.; De Marco, R.; Liu, J. et al. One-pot pyrolysis method to fabricate carbon nanotube supported Ni single-atom catalysts with ultrahigh loading. ACS Appl. Energy Mater. 2018, 1, 5286–5297.

[23]

Cheng, Y.; Zhao, S. Y.; Johannessen, B.; Veder, J. P.; Saunders, M.; Rowles, M. R.; Cheng, M.; Liu, C.; Chisholm, M. F.; De Marco, R. et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 2018, 30, 1706287.

[24]

Abbas, S. A.; Song, J. T.; Tan, Y. C.; Nam, K. M.; Oh, J.; Jung, K. D. Synthesis of a nickel single-atom catalyst based on Ni-N4− x C x active sites for highly efficient CO2 reduction utilizing a gas diffusion electrode. ACS Appl. Energy Mater. 2020, 3, 8739–8745.

[25]

Jin, S.; Ni, Y. X.; Hao, Z. M.; Zhang, K.; Lu, Y.; Yan, Z. H.; Wei, Y. J.; Lu, Y. R.; Chan, T. S.; Chen, J. A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 21885–21889.

[26]

Li, X. N.; Huang, X.; Xi, S. B.; Miao, S.; Ding, J.; Cai, W. Z.; Liu, S.; Yang, X. L.; Yang, H. B.; Gao, J. J. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475.

[27]

Xiong, W. F.; Li, H. F.; Wang, H. M.; Yi, J. D.; You, H. H.; Zhang, S. Y.; Hou, Y.; Cao, M. N.; Zhang, T.; Cao, R. Hollow mesoporous carbon sphere loaded Ni-N4 single-atom: Support structure study for CO2 electrocatalytic reduction catalyst. Small 2020, 16, 2003943.

[28]

Yang, X.; Cheng, J.; Lv, H. K.; Yang, X.; Ding, L. W.; Xu, Y.; Zhang, K.; Sun, W. F.; Zhou, J. H. Sulfur-doped unsaturated Ni-N3 coordination for efficient electroreduction of CO2. Chem. Eng. J. 2022, 450, 137950.

[29]

Jeong, H. Y.; Balamurugan, M.; Choutipalli, V. S. K.; Jo, J.; Baik, H.; Subramanian, V.; Kim, M.; Sim, U.; Nam, K. T. Tris(2-benzimidazolylmethyl)amine-directed synthesis of single-atom nickel catalysts for electrochemical CO production from CO2. Chem.: Eur. J. 2018, 24, 18444–18454.

[30]

Huang, R. K.; Cao, C. Y.; Liu, J.; Zheng, L. R.; Zhang, Q. H.; Gu, L.; Jiang, L.; Song, W. G. Integration of metal single atoms on hierarchical porous nitrogen-doped carbon for highly efficient hydrogenation of large-sized molecules in the pharmaceutical industry. ACS Appl. Mater. Interfaces 2020, 12, 17651–17658.

[31]

Zeng, L. Y.; Liu, Z.; Sun, K. A.; Chen, Y. J.; Zhao, J. C.; Chen, Y. J.; Pan, Y.; Lu, Y. K.; Liu, Y. Q.; Liu, C. G. Multiple modulations of pyrite nickel sulfides via metal heteroatom doping engineering for boosting alkaline and neutral hydrogen evolution. J. Mater. Chem. A 2019, 7, 25628–25640.

[32]

Zhang, Z. T.; Yang, S. M.; Jiang, R.; Sheng, T.; Shi, C. F.; Chen, Y. G.; Wang, L. Y. Intensifying uneven charge distribution via geometric distortion engineering in atomically dispersed M-N x /S sites for efficient oxygen electroreduction. Nano Res. 2022, 15, 8928–8935.

[33]

Yang, L. P.; Zhang, X.; Yu, L. X.; Hou, J. H.; Zhou, Z.; Lv, R. T. Atomic Fe-N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-air batteries with stable cycling over 1000 h. Adv. Mater. 2022, 34, 2105410.

[34]

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Dong Kim, N.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

[35]

Smith, G. V.; Roth, J. A. Evidence for homolytic mechanism in metal-catalyzed hydrogenation and exchange of α,β-unsaturated esters. J. Catal. 1965, 4, 406–407.

Nano Research
Article number: 94907053
Cite this article:
Sun T, Jian C, Wang G, et al. Construction of Ni single-atom coordinated with doped N and S elements for mild hydrogenation of methyl acrylate to methyl propionate. Nano Research, 2025, 18(1): 94907053. https://doi.org/10.26599/NR.2025.94907053
Topics:

349

Views

44

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 June 2024
Revised: 25 September 2024
Accepted: 26 September 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return