Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The electromechanical coupling effects in two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted great interest. However, for 2D TMDs, piezoelectricity is confined to the basal plane, and the flexoelectricity-derived out-of-plane electromechanical response is usually faint, limiting the applications of this material family using the out-of-plane electromechanical effects. Here, this work reports a facile strategy to greatly enhance the out-of-plane electromechanical response of hexagonal molybdenum disulfide (2H-MoS2) nanoflakes by stacking monolayer hexagonal boron nitride (h-BN) on 2H-MoS2 nanoflakes to form MoS2/BN heterostructures. The
Han, S. A.; Kim, T. H.; Kim, S. K.; Lee, K. H.; Park, H. J.; Lee, J. H.; Kim, S. W. Point-defect-passivated MoS2 nanosheet-based high performance piezoelectric nanogenerator. Adv. Mater. 2018, 30, 1800342.
Meng, C.; Thrane, P. C. V.; Ding, F.; Gjessing, J.; Thomaschewski, M.; Wu, C.; Dirdal, C.; Bozhevolnyi, S. I. Dynamic piezoelectric MEMS-based optical metasurfaces. Sci. Adv. 2021, 7, eabg5639.
Shi, Y.; Askounis, E.; Plamthottam, R.; Libby, T.; Peng, Z. H.; Youssef, K.; Pu, J. H.; Pelrine, R.; Pei, Q. B. A processable, high-performance dielectric elastomer and multilayering process. Science 2022, 377, 228–232.
He, Q. Q.; Zeng, Y. S.; Jiang, L. M.; Wang, Z. Y.; Lu, G. X.; Kang, H. C.; Li, P.; Bethers, B.; Feng, S. W.; Sun, L. Z. et al. Growing recyclable and healable piezoelectric composites in 3D printed bioinspired structure for protective wearable sensor. Nat. Commun. 2023, 14, 6477.
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, eaac9439.
Jiang, J.; Chen, Z. Z.; Hu, Y.; Xiang, Y.; Zhang, L. F.; Wang, Y. P.; Wang, G. C.; Shi, J. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 2021, 16, 894–901.
Li, Y. H.; Wang, X.; Tang, D. Q.; Wang, X.; Watanabe, K.; Taniguchi, T.; Gamelin, D. R.; Cobden, D. H.; Yankowitz, M.; Xu, X. D. et al. Unraveling strain gradient induced electromechanical coupling in twisted double bilayer graphene moiré superlattices. Adv. Mater. 2021, 33, 2105879.
Brennan, C. J.; Ghosh, R.; Koul, K.; Banerjee, S. K.; Lu, N. S.; Yu, E. T. Out-of-plane electromechanical response of monolayer molybdenum disulfide measured by piezoresponse force microscopy. Nano Lett. 2017, 17, 5464–5471.
Dong, L.; Lou, J.; Shenoy, V. B. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano 2017, 11, 8242–8248.
Abdollahi, A.; Domingo, N.; Arias, I.; Catalan, G. Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials. Nat. Commun. 2019, 10, 1266.
Brennan, C. J.; Koul, K.; Lu, N. S.; Yu, E. T. Out-of-plane electromechanical coupling in transition metal dichalcogenides. Appl. Phys. Lett. 2020, 116, 053101.
Huang, S. J.; Qi, L.; Huang, W. B.; Shu, L. L.; Zhou, S. J.; Jiang, X. N. Flexoelectricity in dielectrics: Materials, structures and characterizations. J. Adv. Dielectr. 2018, 8, 1830002.
Lueng, C. M.; Chan, H. L. W.; Surya, C.; Choy, C. L. Piezoelectric coefficient of aluminum nitride and gallium nitride. J. Appl. Phys. 2000, 88, 5360–5363.
Kang, S.; Kim, S.; Jeon, S.; Jang, W. S.; Seol, D.; Kim, Y. M.; Lee, J.; Yang, H.; Kim, Y. Atomic-scale symmetry breaking for out-of-plane piezoelectricity in two-dimensional transition metal dichalcogenides. Nano Energy 2019, 58, 57–62.
Lu, A. Y.; Zhu, H. Y.; Xiao, J.; Chuu, C. P.; Han, Y. M.; Chiu, M. H.; Cheng, C. C.; Yang, C. W.; Wei, K. H.; Yang, Y. M. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 2017, 12, 744–749.
Gao, J.; Kim, Y. D.; Liang, L. B.; Idrobo, J. C.; Chow, P.; Tan, J. W.; Li, B. C.; Li, L.; Sumpter, B. G.; Lu, T. M. et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 2016, 28, 9735–9743.
Yang, M. M.; Luo, Z. D.; Mi, Z.; Zhao, J. J.; E, S. P.; Alexe, M. Piezoelectric and pyroelectric effects induced by interface polar symmetry. Nature 2020, 584, 377–381.
Zhang, J.; Tan, B. Y.; Zhang, X.; Gao, F.; Hu, Y. X.; Wang, L. F.; Duan, X. M.; Yang, Z. H.; Hu, P. G. Atomically thin hexagonal boron nitride and its heterostructures. Adv. Mater. 2021, 33, 2000769.
Behura, S.; Nguyen, P.; Che, S. W.; Debbarma, R.; Berry, V. Large-area, transfer-free, oxide-assisted synthesis of hexagonal boron nitride films and their heterostructures with MoS2 and WS2. J. Am. Chem. Soc. 2015, 137, 13060–13065.
Wang, W.; Zhou, L. J.; Hu, S.; Novoselov, K. S.; Cao, Y. Visualizing piezoelectricity on 2D crystals nanobubbles. Adv. Funct. Mater. 2021, 31, 2005053.
Kalinin, S. V.; Bonnell, D. A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 2002, 65, 125408.
Duerloo, K. A. N.; Ong, M. T.; Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 2012, 3, 2871–2876.
Zhu, H. Y.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S. M.; Wong, Z. J.; Ye, Z. L.; Ye, Y.; Yin, X. B.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2015, 10, 151–155.
Andrei, A.; Krupa, K.; Jozwik, M.; Delobelle, P.; Hirsinger, L.; Gorecki, C.; Nieradko, L.; Meunier, C. AlN as an actuation material for MEMS applications: The case of AlN driven multilayered cantilevers. Sens. Actuators A: Phys. 2008, 141, 565–576.
Falin, A.; Cai, Q. R.; Santos, E. J. G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S. M.; Watanabe, K.; Taniguchi, T. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 2017, 8, 15815.
Zhuang, X. Y.; He, B.; Javvaji, B.; Park, H. S. Intrinsic bending flexoelectric constants in two-dimensional materials. Phys. Rev. B 2019, 99, 054105.
McGilly, L. J.; Kerelsky, A.; Finney, N. R.; Shapovalov, K.; Shih, E. M.; Ghiotto, A.; Zeng, Y. H.; Moore, S. L.; Wu, W. J.; Bai, Y. S. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 2020, 15, 580–584.
Chen, Y. C.; Tang, Z. Y.; Shan, H. L.; Jiang, B.; Ding, Y. L.; Luo, X.; Zheng, Y. Enhanced out-of-plane piezoelectric effect in In2Se3/transition metal dichalcogenide heterostructures. Phys. Rev. B 2021, 104, 075449.
Yuan, S. G.; Io, W. F.; Mao, J. F.; Chen, Y. C.; Luo, X.; Hao, J. H. Enhanced piezoelectric response of layered In2Se3/MoS2 nanosheet-based van der Waals heterostructures. ACS Appl. Nano Mater. 2020, 3, 11979–11986.
Yuan, S. G.; Zhang, Y. M.; Dai, M. Z.; Chen, Y. C.; Yu, H. Y.; Ma, Z. S.; Io, W. F.; Luo, X.; Hou, P. F.; Hao, J. H. A giant tunable piezoelectric performance in two-dimensional In2Se3 via interface engineering. Adv. Electron. Mater. 2024, 10, 2300741.
Cao, V. A.; Kim, M.; Hu, W. G.; Lee, S.; Youn, S.; Chang, J.; Chang, H. S.; Nah, J. Enhanced piezoelectric output performance of the SnS2/SnS heterostructure thin-film piezoelectric nanogenerator realized by atomic layer deposition. ACS Nano 2021, 15, 10428–10436.
Kim, J. H.; Lee, J.; Kim, J. H.; Hwang, C. C.; Lee, C.; Park, J. Y. Work function variation of MoS2 atomic layers grown with chemical vapor deposition: The effects of thickness and the adsorption of water/oxygen molecules. Appl. Phys. Lett. 2015, 106, 251606.
Tamulewicz, M.; Kutrowska-Girzycka, J.; Gajewski, K.; Serafińczuk, J.; Sierakowski, A.; Jadczak, J.; Bryja, L.; Gotszalk, T. P. Layer number dependence of the work function and optical properties of single and few layers MoS2: Effect of substrate. Nanotechnology 2019, 30, 245708.
Huang, Z. Y.; He, C. Y.; Qi, X.; Yang, H.; Liu, W. L.; Wei, X. L.; Peng, X. Y.; Zhong, J. X. Band structure engineering of monolayer MoS2 on h-BN: First-principles calculations. J. Phys. D: Appl. Phys. 2014, 47, 075301.
Joo, M. K.; Moon, B. H.; Ji, H.; Han, G. H.; Kim, H.; Lee, G.; Lim, S. C.; Suh, D.; Lee, Y. H. Electron excess doping and effective Schottky barrier reduction on the MoS2/h-BN heterostructure. Nano Lett. 2016, 16, 6383–6389.
Tung, R. T. Recent advances in Schottky barrier concepts. Mater. Sci. Eng.: R: Rep. 2001, 35, 1–138.
Siao, M. D.; Shen, W. C.; Chen, R. S.; Chang, Z. W.; Shih, M. C.; Chiu, Y. P.; Cheng, C. M. Two-dimensional electronic transport and surface electron accumulation in MoS2. Nat. Commun. 2018, 9, 1442.
Hu, Y. X.; Pan, Y. Y.; Wang, Z. L.; Lin, T.; Gao, Y. Y.; Luo, B.; Hu, H.; Fan, F. T.; Liu, G.; Wang, L. Z. Lattice distortion induced internal electric field in TiO2 photoelectrode for efficient charge separation and transfer. Nat. Commun. 2020, 11, 2129.
Narvaez, J.; Vasquez-Sancho, F.; Catalan, G. Enhanced flexoelectric-like response in oxide semiconductors. Nature 2016, 538, 219–221.
Zhang, X. T.; Pan, Q.; Tian, D. X.; Zhou, W. F.; Chen, P.; Zhang, H. F.; Chu, B. J. Large flexoelectriclike response from the spontaneously polarized surfaces in ferroelectric ceramics. Phys. Rev. Lett. 2018, 121, 057602.
Newnham, R. E.; Skinner, D. P.; Cross, L. E. Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 1978, 13, 525–536.
Lozano, H.; Catalán, G.; Esteve, J.; Domingo, N.; Murillo, G. Non-linear nanoscale piezoresponse of single ZnO nanowires affected by piezotronic effect. Nanotechnology 2021, 32, 025202.
394
Views
78
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).