AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Largely enhanced out-of-plane electromechanical coupling effects in two-dimensional molybdenum-disulfide/boron-nitride heterostructures

Qiong Liu1,2Vijay Kumar Choyal1James E. Morris3Timon Rabczuk4Xiaoning Jiang5Xiaoying Zhuang1,6,7 ( )
Institute of Photonics (IOP), Faculty of Mathematics and Physics, Leibniz University Hannover, Hannover 30167, Germany
Laboratory of Nano and Quantum Engineering (LNQE), Leibniz University Hannover, Hannover 30167, Germany
Department of Electrical & Computer Engineering, Portland State University, Portland, OR 97207-0751, USA
Institute of Structural Mechanics, Bauhaus University, Weimar 99423, Germany
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA
Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
Cluster of Excellence PhoenixD (Photonics, Optics and Engineering – Innovation Across Disciplines), Hannover 30167, Germany
Show Author Information

Graphical Abstract

The piezoresponse force microscopy (PFM) results show that the out-of-plane electromechanical performances of MoS2/boron nitride (BN) heterostructures are largely enhanced in comparison with MoS2 nanoflakes.

Abstract

The electromechanical coupling effects in two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted great interest. However, for 2D TMDs, piezoelectricity is confined to the basal plane, and the flexoelectricity-derived out-of-plane electromechanical response is usually faint, limiting the applications of this material family using the out-of-plane electromechanical effects. Here, this work reports a facile strategy to greatly enhance the out-of-plane electromechanical response of hexagonal molybdenum disulfide (2H-MoS2) nanoflakes by stacking monolayer hexagonal boron nitride (h-BN) on 2H-MoS2 nanoflakes to form MoS2/BN heterostructures. The d33eff coefficient of MoS2/BN can reach a value comparable to that of commonly used wurtzite bulk piezoelectric materials, such as AlN and GaN. The strong out-of-plane electromechanical response of MoS2/BN is due to the breaking of the out-of-plane structural symmetry. Kelvin probe force microscopy (KPFM) results show an increased effective work function of MoS2/BN, indicating polar-structure formation at the heterostructure interface, which also accounts for the enhanced out-of-plane piezoresponse. This study gives an insight into the role of heterostructure engineering in the electromechanical performances of 2D TMDs, and provides this material family an opportunity for applications using out-of-plane electromechanical effects.

Electronic Supplementary Material

Download File(s)
7050_ESM.pdf (1.9 MB)

References

[1]

Han, S. A.; Kim, T. H.; Kim, S. K.; Lee, K. H.; Park, H. J.; Lee, J. H.; Kim, S. W. Point-defect-passivated MoS2 nanosheet-based high performance piezoelectric nanogenerator. Adv. Mater. 2018, 30, 1800342.

[2]

Meng, C.; Thrane, P. C. V.; Ding, F.; Gjessing, J.; Thomaschewski, M.; Wu, C.; Dirdal, C.; Bozhevolnyi, S. I. Dynamic piezoelectric MEMS-based optical metasurfaces. Sci. Adv. 2021, 7, eabg5639.

[3]

Shi, Y.; Askounis, E.; Plamthottam, R.; Libby, T.; Peng, Z. H.; Youssef, K.; Pu, J. H.; Pelrine, R.; Pei, Q. B. A processable, high-performance dielectric elastomer and multilayering process. Science 2022, 377, 228–232.

[4]

He, Q. Q.; Zeng, Y. S.; Jiang, L. M.; Wang, Z. Y.; Lu, G. X.; Kang, H. C.; Li, P.; Bethers, B.; Feng, S. W.; Sun, L. Z. et al. Growing recyclable and healable piezoelectric composites in 3D printed bioinspired structure for protective wearable sensor. Nat. Commun. 2023, 14, 6477.

[5]

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, eaac9439.

[6]

Jiang, J.; Chen, Z. Z.; Hu, Y.; Xiang, Y.; Zhang, L. F.; Wang, Y. P.; Wang, G. C.; Shi, J. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 2021, 16, 894–901.

[7]

Li, Y. H.; Wang, X.; Tang, D. Q.; Wang, X.; Watanabe, K.; Taniguchi, T.; Gamelin, D. R.; Cobden, D. H.; Yankowitz, M.; Xu, X. D. et al. Unraveling strain gradient induced electromechanical coupling in twisted double bilayer graphene moiré superlattices. Adv. Mater. 2021, 33, 2105879.

[8]

Brennan, C. J.; Ghosh, R.; Koul, K.; Banerjee, S. K.; Lu, N. S.; Yu, E. T. Out-of-plane electromechanical response of monolayer molybdenum disulfide measured by piezoresponse force microscopy. Nano Lett. 2017, 17, 5464–5471.

[9]

Dong, L.; Lou, J.; Shenoy, V. B. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano 2017, 11, 8242–8248.

[10]

Abdollahi, A.; Domingo, N.; Arias, I.; Catalan, G. Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials. Nat. Commun. 2019, 10, 1266.

[11]

Brennan, C. J.; Koul, K.; Lu, N. S.; Yu, E. T. Out-of-plane electromechanical coupling in transition metal dichalcogenides. Appl. Phys. Lett. 2020, 116, 053101.

[12]

Huang, S. J.; Qi, L.; Huang, W. B.; Shu, L. L.; Zhou, S. J.; Jiang, X. N. Flexoelectricity in dielectrics: Materials, structures and characterizations. J. Adv. Dielectr. 2018, 8, 1830002.

[13]

Lueng, C. M.; Chan, H. L. W.; Surya, C.; Choy, C. L. Piezoelectric coefficient of aluminum nitride and gallium nitride. J. Appl. Phys. 2000, 88, 5360–5363.

[14]

Kang, S.; Kim, S.; Jeon, S.; Jang, W. S.; Seol, D.; Kim, Y. M.; Lee, J.; Yang, H.; Kim, Y. Atomic-scale symmetry breaking for out-of-plane piezoelectricity in two-dimensional transition metal dichalcogenides. Nano Energy 2019, 58, 57–62.

[15]

Lu, A. Y.; Zhu, H. Y.; Xiao, J.; Chuu, C. P.; Han, Y. M.; Chiu, M. H.; Cheng, C. C.; Yang, C. W.; Wei, K. H.; Yang, Y. M. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 2017, 12, 744–749.

[16]

Gao, J.; Kim, Y. D.; Liang, L. B.; Idrobo, J. C.; Chow, P.; Tan, J. W.; Li, B. C.; Li, L.; Sumpter, B. G.; Lu, T. M. et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 2016, 28, 9735–9743.

[17]

Yang, M. M.; Luo, Z. D.; Mi, Z.; Zhao, J. J.; E, S. P.; Alexe, M. Piezoelectric and pyroelectric effects induced by interface polar symmetry. Nature 2020, 584, 377–381.

[18]

Zhang, J.; Tan, B. Y.; Zhang, X.; Gao, F.; Hu, Y. X.; Wang, L. F.; Duan, X. M.; Yang, Z. H.; Hu, P. G. Atomically thin hexagonal boron nitride and its heterostructures. Adv. Mater. 2021, 33, 2000769.

[19]

Behura, S.; Nguyen, P.; Che, S. W.; Debbarma, R.; Berry, V. Large-area, transfer-free, oxide-assisted synthesis of hexagonal boron nitride films and their heterostructures with MoS2 and WS2. J. Am. Chem. Soc. 2015, 137, 13060–13065.

[20]

Wang, W.; Zhou, L. J.; Hu, S.; Novoselov, K. S.; Cao, Y. Visualizing piezoelectricity on 2D crystals nanobubbles. Adv. Funct. Mater. 2021, 31, 2005053.

[21]

Kalinin, S. V.; Bonnell, D. A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 2002, 65, 125408.

[22]

Duerloo, K. A. N.; Ong, M. T.; Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 2012, 3, 2871–2876.

[23]

Zhu, H. Y.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S. M.; Wong, Z. J.; Ye, Z. L.; Ye, Y.; Yin, X. B.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2015, 10, 151–155.

[24]

Andrei, A.; Krupa, K.; Jozwik, M.; Delobelle, P.; Hirsinger, L.; Gorecki, C.; Nieradko, L.; Meunier, C. AlN as an actuation material for MEMS applications: The case of AlN driven multilayered cantilevers. Sens. Actuators A: Phys. 2008, 141, 565–576.

[25]

Falin, A.; Cai, Q. R.; Santos, E. J. G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S. M.; Watanabe, K.; Taniguchi, T. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 2017, 8, 15815.

[26]

Zhuang, X. Y.; He, B.; Javvaji, B.; Park, H. S. Intrinsic bending flexoelectric constants in two-dimensional materials. Phys. Rev. B 2019, 99, 054105.

[27]

McGilly, L. J.; Kerelsky, A.; Finney, N. R.; Shapovalov, K.; Shih, E. M.; Ghiotto, A.; Zeng, Y. H.; Moore, S. L.; Wu, W. J.; Bai, Y. S. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 2020, 15, 580–584.

[28]

Chen, Y. C.; Tang, Z. Y.; Shan, H. L.; Jiang, B.; Ding, Y. L.; Luo, X.; Zheng, Y. Enhanced out-of-plane piezoelectric effect in In2Se3/transition metal dichalcogenide heterostructures. Phys. Rev. B 2021, 104, 075449.

[29]

Yuan, S. G.; Io, W. F.; Mao, J. F.; Chen, Y. C.; Luo, X.; Hao, J. H. Enhanced piezoelectric response of layered In2Se3/MoS2 nanosheet-based van der Waals heterostructures. ACS Appl. Nano Mater. 2020, 3, 11979–11986.

[30]

Yuan, S. G.; Zhang, Y. M.; Dai, M. Z.; Chen, Y. C.; Yu, H. Y.; Ma, Z. S.; Io, W. F.; Luo, X.; Hou, P. F.; Hao, J. H. A giant tunable piezoelectric performance in two-dimensional In2Se3 via interface engineering. Adv. Electron. Mater. 2024, 10, 2300741.

[31]

Cao, V. A.; Kim, M.; Hu, W. G.; Lee, S.; Youn, S.; Chang, J.; Chang, H. S.; Nah, J. Enhanced piezoelectric output performance of the SnS2/SnS heterostructure thin-film piezoelectric nanogenerator realized by atomic layer deposition. ACS Nano 2021, 15, 10428–10436.

[32]

Kim, J. H.; Lee, J.; Kim, J. H.; Hwang, C. C.; Lee, C.; Park, J. Y. Work function variation of MoS2 atomic layers grown with chemical vapor deposition: The effects of thickness and the adsorption of water/oxygen molecules. Appl. Phys. Lett. 2015, 106, 251606.

[33]

Tamulewicz, M.; Kutrowska-Girzycka, J.; Gajewski, K.; Serafińczuk, J.; Sierakowski, A.; Jadczak, J.; Bryja, L.; Gotszalk, T. P. Layer number dependence of the work function and optical properties of single and few layers MoS2: Effect of substrate. Nanotechnology 2019, 30, 245708.

[34]

Huang, Z. Y.; He, C. Y.; Qi, X.; Yang, H.; Liu, W. L.; Wei, X. L.; Peng, X. Y.; Zhong, J. X. Band structure engineering of monolayer MoS2 on h-BN: First-principles calculations. J. Phys. D: Appl. Phys. 2014, 47, 075301.

[35]

Joo, M. K.; Moon, B. H.; Ji, H.; Han, G. H.; Kim, H.; Lee, G.; Lim, S. C.; Suh, D.; Lee, Y. H. Electron excess doping and effective Schottky barrier reduction on the MoS2/h-BN heterostructure. Nano Lett. 2016, 16, 6383–6389.

[36]

Tung, R. T. Recent advances in Schottky barrier concepts. Mater. Sci. Eng.: R: Rep. 2001, 35, 1–138.

[37]

Siao, M. D.; Shen, W. C.; Chen, R. S.; Chang, Z. W.; Shih, M. C.; Chiu, Y. P.; Cheng, C. M. Two-dimensional electronic transport and surface electron accumulation in MoS2. Nat. Commun. 2018, 9, 1442.

[38]

Hu, Y. X.; Pan, Y. Y.; Wang, Z. L.; Lin, T.; Gao, Y. Y.; Luo, B.; Hu, H.; Fan, F. T.; Liu, G.; Wang, L. Z. Lattice distortion induced internal electric field in TiO2 photoelectrode for efficient charge separation and transfer. Nat. Commun. 2020, 11, 2129.

[39]

Narvaez, J.; Vasquez-Sancho, F.; Catalan, G. Enhanced flexoelectric-like response in oxide semiconductors. Nature 2016, 538, 219–221.

[40]

Zhang, X. T.; Pan, Q.; Tian, D. X.; Zhou, W. F.; Chen, P.; Zhang, H. F.; Chu, B. J. Large flexoelectriclike response from the spontaneously polarized surfaces in ferroelectric ceramics. Phys. Rev. Lett. 2018, 121, 057602.

[41]

Newnham, R. E.; Skinner, D. P.; Cross, L. E. Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 1978, 13, 525–536.

[42]

Lozano, H.; Catalán, G.; Esteve, J.; Domingo, N.; Murillo, G. Non-linear nanoscale piezoresponse of single ZnO nanowires affected by piezotronic effect. Nanotechnology 2021, 32, 025202.

Nano Research
Article number: 94907050
Cite this article:
Liu Q, Choyal VK, Morris JE, et al. Largely enhanced out-of-plane electromechanical coupling effects in two-dimensional molybdenum-disulfide/boron-nitride heterostructures. Nano Research, 2025, 18(1): 94907050. https://doi.org/10.26599/NR.2025.94907050
Topics:

394

Views

78

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 August 2024
Revised: 22 September 2024
Accepted: 24 September 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return