Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrochemical nitrate reduction reaction (NO3RR) to ammonia is a promising approach to address excess N-contamination in aqueous environment but suffers from a limited ammonia yield and selectivity due to the low concentration and sluggish kinetics. This work reports a three-dimensional porous electrode with binary Co2Cu1 hydroxy phosphate embedded into the surface of Ni3Co1 oxy/hydroxides (CoCu-PH@NiCo/Ni, “PH” means phosphate-hydroxide), which delivers a yield of 4.13 mg·h−1·cm−2 with a high Faraday efficiency of 92.6% under a low nitrate concentration of 40 mM and provide an impressive stability. This embedded structure of the as-prepared catalyst exhibits unique metal coordination ligands and valence states different from the unitary hydroxy-phosphate. The electrochemical in situ infrared spectra and theoretical calculations revealed that the Co sites with the ability to dissociate water molecular to form adsorbed OH* can effectively provide the required protons for the deoxygenation and hydrogenation steps during NO3− conversion, thereby, effectively reducing the energy barrier of the key transition states in the NO3RR process to improve the intrinsic kinetics. We demonstrate that the rational design of binary components with the appropriate ability to activate water molecules as well as the three-dimensional porous skeletal structure are expected to promote effectively the low-concentration nitrates conversion to ammonia.
Wang, Y. T.; Yu, Y. F.; Jia, R. R.; Zhang, C.; Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl. Sci. Rev. 2019, 6, 730–738.
Zeng, Y. C.; Priest, C.; Wang, G. F.; Wu, G. Restoring the nitrogen cycle by electrochemical reduction of nitrate: Progress and prospects. Small Methods 2020, 4, 2000672.
Truong, N. H.; Kim, J. S.; Lim, J.; Shin, H. Electrochemical reduction of nitrate to Ammonia: Recent progress and future directions. Chem. Eng. J. 2024, 495, 153108.
van Langevelde, P. H.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 2021, 5, 290–294.
Xiong, Y. C.; Wang, Y. H.; Zhou, J. W.; Liu, F.; Hao, F. K.; Fan, Z. X. Electrochemical nitrate reduction: Ammonia synthesis and the beyond. Adv. Mater. 2024, 36, 2304021.
Lu, X. M.; Song, H. Q.; Cai, J. M.; Lu, S. Y. Recent development of electrochemical nitrate reduction to ammonia: A mini review. Electrochem. Commun. 2021, 129, 107094.
Ren, S. J.; Gao, R. T.; Nguyen, N. T.; Wang, L. Enhanced charge carrier dynamics on Sb2Se3 photocathodes for efficient photoelectrochemical nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2024, 63, e202317414.
Wang, M.; Khan, M. A.; Mohsin, I.; Wicks, J.; Ip, A. H.; Sumon, K. Z.; Dinh, C. T.; Sargent, E. H.; Gates, I. D.; Kibria, M. G. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes. Energy Environ. Sci. 2021, 14, 2535–2548.
Duca, M.; Koper, M. T. M. Powering denitrification: The perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 2012, 5, 9726–9742.
Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.
Sun, W. J.; Ji, H. Q.; Li, L. X.; Zhang, H. Y.; Wang, Z. K.; He, J. H.; Lu, J. M. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew. Chem., Int. Ed. 2021, 60, 22933–22939.
Song, Q. N.; Li, M.; Hou, X. S.; Li, J. C.; Dong, Z. J.; Zhang, S.; Yang, L.; Liu, X. Anchored Fe atoms for N=O bond activation to boost electrocatalytic nitrate reduction at low concentrations. Appl. Catal. B 2022, 317, 121721.
Wu, Y. D.; Lu, K. K.; Xu, L. H. Progress and prospects of electrochemical reduction of nitrate to restore the nitrogen cycle. J. Mater. Chem. A 2023, 11, 17392–17417.
Xu, H.; Ma, Y. Y.; Chen, J.; Zhang, W. X.; Yang, J. P. Electrocatalytic reduction of nitrate—A step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758.
Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.
Zhao, Y. X.; Liang, S. Z.; Zhao, Y. J.; Zhang, H. J.; Zheng, X.; Li, Z. Q.; Chen, L. S.; Tang, J. Hollow mesoporous carbon supported Co-modified Cu/Cu2O electrocatalyst for nitrate reduction reaction. J. Colloid Interface Sci. 2024, 655, 208–216.
Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.
Hao, R.; Tian, L.; Wang, C.; Wang, L.; Liu, Y. P.; Wang, G. C.; Li, W.; Ozin, G. A. Pollution to solution: A universal electrocatalyst for reduction of all NO x -based species to NH3. Chem Catal. 2022, 2, 622–638.
Zhang, X.; Wang, C. H.; Guo, Y. M.; Zhang, B.; Wang, Y. T.; Yu, Y. F. Cu clusters/TiO2− x with abundant oxygen vacancies for enhanced electrocatalytic nitrate reduction to ammonia. J. Mater. Chem. A 2022, 10, 6448–6453.
Zhao, X.; Hu, G. Z.; Tan, F.; Zhang, S. S.; Wang, X. Z.; Hu, X.; Kuklin, A. V.; Baryshnikov, G. V.; Ågren, H.; Zhou, X. H.; Zhang, H. B. Copper confined in vesicle-like BCN cavities promotes electrochemical reduction of nitrate to ammonia in water. J. Mater. Chem. A 2021, 9, 23675–23686.
Liu, H. M.; Lang, X. Y.; Zhu, C.; Timoshenko, J.; Rüscher, M.; Bai, L. C.; Guijarro, N.; Yin, H. B.; Peng, Y.; Li, J. H. et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem., Int. Ed. 2022, 61, e202202556.
Wang, W. Y.; Chen, J.; Tse, E. C. M. Synergy between Cu and Co in a layered double hydroxide enables close to 100% nitrate-to-ammonia selectivity. J. Am. Chem. Soc. 2023, 145, 26678–26687.
Wang, Y. H.; Xu, A. N.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708.
Liu, P.; Yan, J. Y.; Huang, H.; Song, W. B. Cu/Co bimetallic conductive MOFs: Electronic modulation for enhanced nitrate reduction to ammonia. Chem. Eng. J. 2023, 466, 143134.
Wang, J.; Feng, T.; Chen, J. X.; Ramalingam, V.; Li, Z. X.; Kabtamu, D. M.; He, J. H.; Fang, X. S. Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 2021, 86, 106088.
Liu, D.; Qiao, L. L.; Peng, S. Y.; Bai, H. Y.; Liu, C. F.; Ip, W. F.; Lo, K. H.; Liu, H. C.; Ng, K. W.; Wang, S. P. et al. Recent advances in electrocatalysts for efficient nitrate reduction to ammonia. Adv. Funct. Mater. 2023, 33, 2303480.
Jung, W.; Hwang, Y. J. Material strategies in the electrochemical nitrate reduction reaction to ammonia production. Mater. Chem. Front. 2021, 5, 6803–6823.
Zhao, H.; Yuan, Z. Y. Insights into transition metal phosphate materials for efficient electrocatalysis. ChemCatChem 2020, 12, 3797–3810.
Guo, R. H.; Lai, X. X.; Huang, J. W.; Du, X. C.; Yan, Y. C.; Sun, Y. H.; Zou, G. F.; Xiong, J. Phosphate-based electrocatalysts for water splitting: Recent progress. ChemElectroChem 2018, 5, 3822–3834.
Zhao, H.; Yuan, Z. Y. Design strategies of transition-metal phosphate and phosphonate electrocatalysts for energy-related reactions. ChemSusChem 2021, 14, 130–149.
Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.
Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.
Gerken, J. B.; McAlpin, J. G.; Chen, J. Y. C.; Rigsby, M. L.; Casey, W. H.; Britt, R. D.; Stahl, S. S. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 2011, 133, 14431–14442.
Kim, H.; Park, J.; Park, I.; Jin, K.; Jerng, S. E.; Kim, S. H.; Nam, K. T.; Kang, K. Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun. 2015, 6, 8253.
Liu, Z. C.; Yuan, X. H.; Zhang, S. S.; Wang, J.; Huang, Q. H.; Yu, N. F.; Zhu, Y. S.; Fu, L. J.; Wang, F. X.; Chen, Y. H. et al. Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 2019, 11, 12.
Huang, Y. M.; He, C. H.; Cheng, C. Q.; Han, S. H.; He, M.; Wang, Y. T.; Meng, N. N.; Zhang, B.; Lu, Q. P.; Yu, Y. F. Pulsed electroreduction of low-concentration nitrate to ammonia. Nat. Commun. 2023, 14, 7368.
Huang, Y. M.; Long, J.; Wang, Y. T.; Meng, N. N.; Yu, Y. F.; Lu, S. Y.; Xiao, J. P.; Zhang, B. Engineering nitrogen vacancy in polymeric carbon nitride for nitrate electroreduction to ammonia. ACS Appl. Mater. Interfaces 2021, 13, 54967–54973.
Polcaro, A. M.; Mascia, M.; Palmas, S.; Vacca, A. Electrochemical oxidation of p-hydroxybenzoic and protocathecuic acids at a dimensional stable anode (DSA) in the presence of NaCl. Ann. Chim. 2002, 92, 1015–1023.
Lu, Y. X.; Zhou, L.; Wang, S. Y.; Zou, Y. Q. Defect engineering of electrocatalysts for organic synthesis. Nano Res. 2023, 16, 1890–1912.
Guo, W.; Dun, C. C.; Yu, C.; Song, X. D.; Yang, F. P.; Kuang, W. Z.; Xie, Y. Y.; Li, S. F.; Wang, Z.; Yu, J. H. et al. Mismatching integration-enabled strains and defects engineering in LDH microstructure for high-rate and long-life charge storage. Nat. Commun. 2022, 13, 1409.
Li, J.; Li, Y.; Routh, P. K.; Makagon, E.; Lubomirsky, I.; Frenkel, A. I. Comparative analysis of XANES and EXAFS for local structural characterization of disordered metal oxides. J. Synchrotron Rad. 2021, 28, 1511–1517.
Fabbri, E.; Abbott, D. F.; Nachtegaal, M.; Schmidt, T. J. Operando X-ray absorption spectroscopy: A powerful tool toward water splitting catalyst development. Curr. Opin. Electrochem. 2017, 5, 20–26.
Zhu, K. Y.; Zhu, X. F.; Yang, W. S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 1252–1265.
Anantharaj, S.; Kundu, S.; Noda, S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514.
You, B.; Tang, M. T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X. L.; Li, H. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 2019, 31, 1807001.
Abascal, E.; Gómez-Coma, L.; Ortiz, I.; Ortiz, A. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci. Total Environ. 2022, 810, 152233.
Foglar, L.; Briški, F.; Sipos, L.; Vuković, M. High nitrate removal from synthetic wastewater with the mixed bacterial culture. Bioresource Technol. 2005, 96, 879–888.
Zhou, J.; Wen, M.; Huang, R.; Wu, Q. S.; Luo, Y. X.; Tian, Y. K.; Wei, G. F.; Fu, Y. Q. Regulating active hydrogen adsorbed on grain boundary defects of nano-nickel for boosting ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2023, 16, 2611–2620.
Katsounaros, I.; Figueiredo, M. C.; Chen, X. T.; Calle-Vallejo, F.; Koper, M. T. M. Structure- and coverage-sensitive mechanism of no reduction on platinum electrodes. ACS Catal. 2017, 7, 4660–4667.
Hadjiivanov, K.; Avreyska, V.; Klissurski, D.; Marinova, T. Surface species formed after NO adsorption and NO + O2 coadsorption on ZrO2 and sulfated ZrO2: An FTIR spectroscopic study. Langmuir 2002, 18, 1619–1625.
Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; Zhao, K. M.; Hu, S. N.; Li, G.; Akdim, O.; Huang, X. Y.; Sun, S. G. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.
Lv, C. D.; Zhong, L. X.; Liu, H. J.; Fang, Z. W.; Yan, C. S.; Chen, M. X.; Kong, Y.; Lee, C.; Liu, D. B.; Li, S. Z. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 2021, 4, 868–876.
Liu, S. S.; Qian, T.; Wang, M. F.; Ji, H. Q.; Shen, X. W.; Wang, C.; Yan, C. L. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 2021, 4, 322–331.
Yao, Y.; Zhu, S. Q.; Wang, H. J.; Li, H.; Shao, M. H. A spectroscopic study of electrochemical nitrogen and nitrate reduction on rhodium surfaces. Angew. Chem., Int. Ed. 2020, 59, 10479–10483.
Zhao, R. D.; Yan, Q. Y.; Yu, L. H.; Yan, T.; Zhu, X. Y.; Zhao, Z. Y.; Liu, L.; Xi, J. Y. A Bi-Co corridor construction effectively improving the selectivity of electrocatalytic nitrate reduction toward ammonia by nearly 100%. Adv. Mater. 2023, 35, 2306633.
Zheng, Q.; Xu, H. Y.; Yao, Y. C.; Dai, J.; Wang, J. X.; Hou, W.; Zhao, L.; Zou, X. Y.; Zhan, G. M.; Wang, R. Z. et al. Cobalt single-atom reverse hydrogen spillover for efficient electrochemical water dissociation and dechlorination. Angew. Chem., Int. Ed. 2024, 63, e202401386.
Zhang, M. L.; Zhang, Z. D.; Zhang, S. L.; Zhuang, Z. C.; Song, K. P.; Paramaiah, K.; Yi, M. Y.; Huang, H.; Wang, D. S. Efficient electrochemical nitrate reduction to ammonia driven by a few nanometer-confined built-in electric field. ACS Catal. 2024, 14, 10437–10446.
Hong, Q. L.; Zhou, J.; Zhai, Q. G.; Jiang, Y. C.; Hu, M. C.; Xiao, X.; Li, S. N.; Chen, Y. Cobalt phosphide nanorings towards efficient electrocatalytic nitrate reduction to ammonia. Chem. Commun. 2021, 57, 11621–11624.
Zhang, Q.; Xiao, W.; Guo, W. H.; Yang, Y. X.; Lei, J. L.; Luo, H. Q.; Li, N. B. Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self-supporting electrode for effective overall water splitting. Adv. Funct. Mater. 2021, 31, 2102117.
Karamad, M.; Goncalves, T. J.; Jimenez-Villegas, S.; Gates, I. D.; Siahrostami, S. Why copper catalyzes electrochemical reduction of nitrate to ammonia. Faraday Discuss. 2023, 243, 502–519.
Fan, K.; Xie, W. F.; Li, J. Z.; Sun, Y. N.; Xu, P. C.; Tang, Y.; Li, Z. H.; Shao, M. F. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 2022, 13, 7958.
Yuan, C. Z.; Jiang, Y. F.; Wang, Z.; Xie, X.; Yang, Z. K.; Yousaf, A. B.; Xu, A. W. Cobalt phosphate nanoparticles decorated with nitrogen-doped carbon layers as highly active and stable electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 8155–8160.
Zhang, R. Y.; van Straaten, G.; Di Palma, V.; Zafeiropoulos, G.; van de Sanden, M. C. M.; Kessels, W. M. M.; Tsampas, M. N.; Creatore, M. Electrochemical activation of atomic layer-deposited cobalt phosphate electrocatalysts for water oxidation. ACS Catal. 2021, 11, 2774–2785.
González-Flores, D.; Sánchez, I.; Zaharieva, I.; Klingan, K.; Heidkamp, J.; Chernev, P.; Menezes, P. W.; Driess, M.; Dau, H.; Montero, M. L. Heterogeneous water oxidation: Surface activity versus amorphization activation in cobalt phosphate catalysts. Angew. Chem., Int. Ed. 2015, 54, 2472–2476.
Odynets, I. V.; Strutynska, N. Y.; Li, J. Z.; Han, W.; Zatovsky, I. V.; Klyui, N. I. CoO x (OH) y /C nanocomposites in situ derived from Na4Co3(PO4)2P2O7 as sustainable electrocatalysts for water splitting. Dalton Trans. 2018, 47, 15703–15713.
Menezes, P. W.; Panda, C.; Walter, C.; Schwarze, M.; Driess, M. A cobalt-based amorphous bifunctional electrocatalysts for water-splitting evolved from a single-source lazulite cobalt phosphate. Adv. Funct. Mater. 2019, 29, 1808632.
Huang, Y. K.; Song, X. D.; Chen, S. B.; Zhang, J.; Gao, H. Q.; Liao, J. J.; Ge, C. J.; Sun, W. Multi-layer architecture of novel sea urchin-like Co-hopeite to boosting overall alkaline water splitting. Adv. Mater. Interfaces 2023, 10, 2202349.
Zhao, Y. X.; Shi, R.; Bian, X. A.; Zhou, C.; Zhao, Y. F.; Zhang, S.; Wu, F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H. et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: How to improve the reliability of NH3 production rates. Adv. Sci. 2019, 6, 1802109.
He, W. H.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.
Notario-Estévez, A.; Kozlov, S. M.; Viñes, F.; Illas, F. Electronic-structure-based material descriptors: (In)dependence on self-interaction and Hartree–Fock exchange. Chem. Commun. 2015, 51, 5602–5605.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.
Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
833
Views
142
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).