Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Plasmon-enhanced electrocatalysis (PEEC) is an emerging approach to mitigate CO2 emissions. The mechanisms behind CO2 adsorption and reduction at the catalyst–electrolyte interface in PEEC still need to be further explored. Herein, we employ a well-defined Ag nanostructure to elucidate these pivotal issues. By shining light with wavelengths of 625, 525, 405 nm on Ag, an adjustable CO/H2 ratio from 35 to 1 can be obtained. The reaction pathway changing under plasmonic excitation does not originate from the lowered CO2 mass transfer in the vicinity of Ag, as the electrochemical quartz crystal microbalance results unravel that a slightly elevated temperature in bulk electrolyte caused by light irradiation cannot weaken the CO2 adsorption at the Ag catalyst–electrolyte interface. Theoretical calculations reveal that optical excitation towards shorter wavelengths leads to a progressive lowered energy barrier for H2 formation together with an enhanced energy barrier for *COOH formation. Although thermodynamically suppressed, CO2 reduction can still be improved kinetically by optimizing the excitation wavelength and intensity, being accompanied with the enhanced photocurrent. Transient absorption spectroscopy results further correlate the higher photocurrent with a prolonged electron-phonon coupling time, verifying that the improvement of CO2 reduction kinetics in PEEC can be realized by hot electron harnessing.
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. J. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202315621.
O’Brien, C. P.; Miao, R. K.; Zeraati, A. S.; Lee, G.; Sargent, E. H.; Sinton, D. CO2 electrolyzers. Chem. Rev. 2024, 124, 3648–3693.
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.
Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Cuenya, B. R. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.
Wang, J. L.; Lai, T. Y.; Lin, H. T.; Kuo, T. R.; Chen, H. C.; Tseng, C. S.; Tung, C. W.; Chien, C. Y.; Chen, H. M. Light-induced dynamic activation of copper/silicon interface for highly selective carbon dioxide reduction. Angew. Chem., Int. Ed. 2024, 63, e202403333.
Jiao, J. Q.; Lin, R.; Liu, S. J.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.
Lin, R.; Ma, X. L.; Cheong, W. C.; Zhang, C.; Zhu, W.; Pei, J. J.; Zhang, K. Y.; Wang, B.; Liang, S. Y.; Liu, Y. X. et al. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Res. 2019, 12, 2866–2871.
Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co–N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.
Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.
Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.
Lv, L. Y.; Tan, H.; Kong, Y.; Tang, B.; Ji, Q. Q.; Liu, Y. Y.; Wang, C.; Zhuang, Z. C.; Wang, H. J.; Ge, M. et al. Breaking the scaling relationship in C–N coupling via the doping effects for efficient urea electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202401943.
Qiu, W. B.; Qin, S. M.; Li, Y. B.; Cao, N.; Cui, W. R.; Zhang, Z. D.; Zhuang, Z. C.; Wang, D. S.; Zhang, Y. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem., Int. Ed. 2024, 63, e202402684.
Yuan, L.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 21150–21172.
Sheng, W. C.; Kattel, S.; Yao, S. Y.; Yan, B. H.; Liang, Z. X.; Hawxhurst, C. J.; Wu, Q. Y.; Chen, J. G. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 2017, 10, 1180–1185.
Zhao, R.; Zhu, Z. Y.; Ouyang, T.; Liu, Z. Q. Selective CO2-to-syngas conversion enabled by bimetallic gold/zinc sites in partially reduced gold/zinc oxide arrays. Angew. Chem., Int. Ed. 2024, 63, e202313597.
Tackett, B. M.; Lee, J. H.; Chen, J. G. Electrochemical conversion of CO2 to syngas with palladium-based electrocatalysts. Acc. Chem. Res. 2020, 53, 1535–1544.
Foit, S. R.; Vinke, I. C.; de Haart, L. G. J.; Eichel, R. A. Power-to-syngas: An enabling technology for the transition of the energy system. Angew. Chem., Int. Ed. 2017, 56, 5402–5411.
Chen, C. B.; Li, Y. F.; Yu, S.; Louisia, S.; Jin, J. B.; Li, M. F.; Ross, M. B.; Yang, P. D. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 2020, 4, 1688–1699.
Liu, S. B.; Sun, C.; Xiao, J.; Luo, J. L. Unraveling structure sensitivity in CO2 electroreduction to near-unity CO on silver nanocubes. ACS Catal. 2020, 10, 3158–3163.
Liu, S. B.; Tao, H. B.; Zeng, L.; Liu, Q.; Xu, Z. H.; Liu, Q. X.; Luo, J. L. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J. Am. Chem. Soc. 2017, 139, 2160–2163.
Corson, E. R.; Creel, E. B.; Kostecki, R.; McCloskey, B. D.; Urban, J. J. Important considerations in plasmon-enhanced electrochemical conversion at voltage-biased electrodes. iScience 2020, 23, 100911.
Creel, E. B.; Corson, E. R.; Eichhorn, J.; Kostecki, R.; Urban, J. J.; McCloskey, B. D. Directing selectivity of electrochemical carbon dioxide reduction using plasmonics. ACS Energy Lett. 2019, 4, 1098–1105.
Kim, Y.; Creel, E. B.; Corson, E. R.; McCloskey, B. D.; Urban, J. J.; Kostecki, R. Surface-plasmon-assisted photoelectrochemical reduction of CO2 and NO3− on nanostructured silver electrodes. Adv. Energy Mater. 2018, 8, 1800363.
Kan, M.; Wang, Q. H.; Hao, S. Y.; Guan, A. X.; Chen, Y. S.; Zhang, Q.; Han, Q.; Zheng, G. F. System engineering enhances photoelectrochemical CO2 reduction. J. Phys. Chem. C 2022, 126, 1689–1700.
Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.
Jain, P. K.; El-Sayed, M. A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 2010, 487, 153–164.
Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.
Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Near field scattering optical model-based catalyst design for artificial photoredox transformation. ACS Catal. 2023, 13, 3971–3982.
Zhang, Z. L.; Zhang, C. Y.; Zheng, H. R.; Xu, H. X. Plasmon-driven catalysis on molecules and nanomaterials. Acc. Chem. Res. 2019, 52, 2506–2515.
Cortés, E.; Xie, W.; Cambiasso, J.; Jermyn, A. S.; Sundararaman, R.; Narang, P.; Schlücker, S.; Maier, S. A. Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 2017, 8, 14880.
Zhan, C.; Moskovits, M.; Tian, Z. Q. Recent progress and prospects in plasmon-mediated chemical reaction. Matter 2020, 3, 42–56.
Yu, S.; Wilson, A. J.; Heo, J.; Jain, P. K. Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett. 2018, 18, 2189–2194.
Kumari, J.; Zhang, X. Q.; Devasia, D.; Heo, J.; Jain, P. K. Watching visible light-driven CO2 reduction on a plasmonic nanoparticle catalyst. ACS Nano 2018, 12, 8330–8340.
Yu, S.; Jain, P. K. Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nat. Commun. 2019, 10, 2022.
Zhang, N.; Han, C.; Fu, X. Z.; Xu, Y. J. Function-oriented engineering of metal-based nanohybrids for photoredox catalysis: Exerting plasmonic effect and beyond. Chem 2018, 4, 1832–1861.
Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y. F.; Mideksa, M. F.; Hou, K.; Zhao, W. S.; Wang, D. W.; Zhao, M. T.; Zhang, X. F. et al. Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis. J. Am. Chem. Soc. 2017, 139, 17964–17972.
Han, C.; Qi, M. Y.; Tang, Z. R.; Gong, J. L.; Xu, Y. J. Gold nanorods-based hybrids with tailored structures for photoredox catalysis: Fundamental science, materials design and applications. Nano Today 2019, 27, 48–72.
Corson, E. R.; Kas, R.; Kostecki, R.; Urban, J. J.; Smith, W. A.; McCloskey, B. D.; Kortlever, R. In situ ATR-SEIRAS of carbon dioxide reduction at a plasmonic silver cathode. J. Am. Chem. Soc. 2020, 142, 11750–11762.
Yan, L. J.; Yan, Y. N.; Xu, L. L.; Ma, R. R.; Jiang, F. X.; Xu, X. H. Large range localized surface plasmon resonance of Ag nanoparticles films dependent of surface morphology. Appl. Surf. Sci. 2016, 367, 563–568.
Valenti, M.; Venugopal, A.; Tordera, D.; Jonsson, M. P.; Biskos, G.; Schmidt-Ott, A.; Smith, W. A. Hot carrier generation and extraction of plasmonic alloy nanoparticles. ACS Photonics 2017, 4, 1146–1152.
Sundararaman, R.; Narang, P.; Jermyn, A. S.; Goddard III, W. A.; Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 2014, 5, 5788.
Lyu, P.; Espinoza, R.; Nguyen, S. C. Photocatalysis of metallic nanoparticles: Interband vs. intraband induced mechanisms. J. Phys. Chem. C 2023, 127, 15685–15698.
Minutella, E.; Schulz, F.; Lange, H. Excitation-dependence of plasmon-induced hot electrons in gold nanoparticles. J. Phys. Chem. Lett. 2017, 8, 4925–4929.
Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.
Sönnichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J.; Wilson, O.; Mulvaney, P. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 2002, 88, 077402.
Shi, Y.; Wang, J.; Wang, C.; Zhai, T. T.; Bao, W. J.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Hot electron of au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 7365–7370.
Zhang, X.; Li, X. Q.; Reish, M. E.; Zhang, D.; Su, N. Q.; Gutiérrez, Y.; Moreno, F.; Yang, W. T.; Everitt, H. O.; Liu, J. Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects. Nano Lett. 2018, 18, 1714–1723.
Yu, Y.; Sundaresan, V.; Willets, K. A. Hot carriers versus thermal effects: Resolving the enhancement mechanisms for plasmon-mediated photoelectrochemical reactions. J. Phys. Chem. C 2018, 122, 5040–5048.
Liu, X. Q.; Meng, F. F.; Chen, X.; Li, Y. H.; Yang, H.; Peng, F.; Lu, X. H.; Tong, Y. X.; Tian, Z. Q.; Li, J. F. et al. Enhancing catalytic activity and selectivity by plasmon-induced hot carriers. iScience 2020, 23, 101107.
Akbashev, A. R. Electrocatalysis goes nuts. ACS Catal. 2022, 12, 4296–4301.
Lee, C.; Park, Y.; Park, J. Y. Hot electrons generated by intraband and interband transition detected using a plasmonic Cu/TiO2 nanodiode. RSC Adv. 2019, 9, 18371–18376.
Li, J. Y.; Yuan, L.; Li, S. H.; Tang, Z. R.; Xu, Y. J. One-dimensional copper-based heterostructures toward photo-driven reduction of CO2 to sustainable fuels and feedstocks. J. Mater. Chem. A 2019, 7, 8676–8689.
Sisler, J.; Khan, S.; Ip, A. H.; Schreiber, M. W.; Jaffer, S. A.; Bobicki, E. R.; Dinh, C. T.; Sargent, E. H. Ethylene electrosynthesis: A comparative techno-economic analysis of alkaline vs. membrane electrode assembly vs. CO2–CO–C2H4 tandems. ACS Energy Lett. 2021, 6, 997–1002.
Mou, T.; Quiroz, J.; Camargo, P. H. C.; Wang, B. Localized orbital excitation drives bond formation in plasmonic catalysis. ACS Appl. Mater. Interfaces 2021, 13, 60115–60124.
Le, T.; Shao, Y. H.; Wang, B. Plasmon-induced CO2 conversion on Al@Cu2O: A DFT study. J. Phys. Chem. C 2021, 125, 6108–6115.
Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 2017, 7, 4822–4827.
Chu, W. B.; Zheng, Q. J.; Prezhdo, O. V.; Zhao, J. CO2 photoreduction on metal oxide surface is driven by transient capture of hot electrons: Ab initio quantum dynamics simulation. J. Am. Chem. Soc. 2020, 142, 3214–3221.
Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.
Hossain, M. D.; Huang, Y. F.; Yu, T. H.; Goddard III, W. A.; Luo, Z. T. Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics. Nat. Commun. 2020, 11, 2256.
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.
Hellman, A.; Razaznejad, B.; Lundqvist, B. I. Potential-energy surfaces for excited states in extended systems. J. Chem. Phys. 2004, 120, 4593–4602.
Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.
Wei, Y.; Mao, Z. J.; Jiang, T. W.; Li, H.; Ma, X. Y.; Zhan, C.; Cai, W. B. Uncovering photoelectronic and photothermal effects in plasmon-mediated electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2024, 63, e202317740.
Zhu, S. Q.; Li, T. H.; Cai, W. B.; Shao, M. H. CO2 electrochemical reduction as probed through infrared spectroscopy. ACS Energy Lett. 2019, 4, 682–689.
Lin, R.; Chen, H. W.; Cui, T. T.; Zhang, Z. D.; Zhou, Q. X.; Nan, L.; Cheong, W. C.; Schröck, L.; Ramm, V.; Ding, Q. R. et al. Optimization of p-type Cu2O nanocube photocatalysts based on electronic effects. ACS Catal. 2023, 13, 11352–11361.
Hüttenhofer, L.; Golibrzuch, M.; Bienek, O.; Wendisch, F. J.; Lin, R.; Becherer, M.; Sharp, I. D.; Maier, S. A.; Cortés, E. Metasurface photoelectrodes for enhanced solar fuel generation. Adv. Energy Mater. 2021, 11, 2102877.
Gao, L. H.; Xiao, W. Y.; Qi, M. Y.; Li, J. Y.; Tan, C. L.; Tang, Z. R. Photoredox-catalyzed coupling of CO2 reduction and amines oxidation by Cu doped CdS quantum dots. Mol. Catal. 2024, 554, 113858.
Zhan, C.; Liu, B. W.; Huang, Y. F.; Hu, S.; Ren, B.; Moskovits, M.; Tian, Z. Q. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun. 2019, 10, 2671.
Ou, W. H.; Zhou, B. B.; Shen, J. D.; Lo, T. W.; Lei, D. Y.; Li, S. L.; Zhong, J.; Li, Y. Y.; Lu, J. Thermal and nonthermal effects in plasmon-mediated electrochemistry at nanostructured Ag electrodes. Angew. Chem., Int. Ed. 2020, 59, 6790–6793.
Ezendam, S.; Herran, M.; Nan, L.; Gruber, C.; Kang, Y. C.; Gröbmeyer, F.; Lin, R.; Gargiulo, J.; Sousa-Castillo, A.; Cortés, E. Hybrid plasmonic nanomaterials for hydrogen generation and carbon dioxide reduction. ACS Energy Lett. 2022, 7, 778–815.
Staechelin, Y. U.; Hoeing, D.; Schulz, F.; Lange, H. Size-dependent electron-phonon coupling in monocrystalline gold nanoparticles. ACS Photonics 2021, 8, 752–757.
Wan, R. D.; Liu, S. L.; Wang, Y.; Yang, Y.; Tian, Y.; Jain, P. K.; Kang, X. W. Hot carrier lifetimes and electrochemical water dissociation enhanced by nickel doping of a plasmonic electrocatalyst. Nano Lett. 2022, 22, 7819–7825.
Zhao, J.; Xue, S.; Ji, R. R.; Li, B.; Li, J. H. Localized surface plasmon resonance for enhanced electrocatalysis. Chem. Soc. Rev. 2021, 50, 12070–12097.
Zhang, F.; Li, Y. H.; Qi, M. Y.; Yamada, Y. M. A.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal. 2021, 1, 272–297.
Jain, P. K. Taking the heat off of plasmonic chemistry. J. Phys. Chem. C 2019, 123, 24347–24351.
Qi, M. Y.; Wu, H. K.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Suzuki cross-coupling reactions over engineered AuPd alloy nanoparticles by recycling scattered light. Nano Res. 2022, 15, 9967–9975.
Zhou, L. N.; Swearer, D. F.; Zhang, C.; Robatjazi, H.; Zhao, H. Q.; Henderson, L.; Dong, L. L.; Christopher, P.; Carter, E. A.; Nordlander, P. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 2018, 362, 69–72.
Dubi, Y.; Un, L. W.; Sivan, Y. Thermal effects-an alternative mechanism for plasmon-assisted photocatalysis. Chem. Sci. 2020, 11, 5017–5027.
Lee, J.; Tak, Y. Electrocatalytic activity of Cu electrode in electroreduction of CO2. Electrochim. Acta 2001, 46, 3015–3022.
Huang, X. F.; Shen, Q.; Liu, J. B.; Yang, N. J.; Zhao, G. H. A CO2 adsorption-enhanced semiconductor/metal-complex hybrid photoelectrocatalytic interface for efficient formate production. Energy Environ. Sci. 2016, 9, 3161–3171.
Ren, J. Z.; Long, X.; Wang, X. T.; Lin, Z. D.; Cai, R. M.; Ju, M.; Qiu, Y. F.; Yang, S. H. Defect-rich heterostructured Bi-based catalysts for efficient CO2 reduction reaction to formate in wide operable windows. Energy Technol. 2022, 10, 2200561.
878
Views
242
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).