AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (22.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Dynamic evolution of Co species and morphological reconstruction on Co-N-C during the nitrate reduction reaction in neutral solution

Yuanlin Fu1Xiaoting Yang2Ya Yu2Kang Zhou3Xiaoyang Ye1Aoxiang Zhang1Xiaojiao Hou1Bingbing Chen1Fuqiang Fan1Yuhang Li1Yu Fu1( )
Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
Department of Physical Education, Shen Yang Institute of Science and Technology, Shenyang 110167, China
Sungrow Power Supply Co., Ltd., Hefei 230088, China
Show Author Information

Graphical Abstract

Our work revealed the dynamic evolution of the valence state and the reason for the morphological change of the Co-N-C during nitrate reduction. The catalyst has a good nitrate reduction reaction (NO3RR) performance in neutral solution and catalytic stability for more than 100 h.

Abstract

The electrochemical nitrate reduction reaction (eNO3RR) is considered an effective approach for converting nitrate-containing wastewater to ammonia. The adsorption and activation of NO3 is the critical step for many materials and the high energy barrier inhibits the continuation of the reduction reaction. The Co nanoparticles encapsulated in the carbon layer we prepared spontaneously react with NO3 and the resulting Co2+ is then reduced by electroreduction to Co0, which circulates continuously. This resulted in overcoming the energy input required for NO3 adsorption and conversion, thereby increasing the catalytic activity. At the same time, the morphology of the catalyst reconstructed from a dodecahedron to an interwoven nanosheet structure and the increased surface area also gives it better properties. The obtained Co(OH)2@Co-N-C has an excellent eNO3RR of 2774.7 μg·h−1·cm−2 with a Faraday efficiency of 81.4% in neutral solution. At the same time, the material-modified electrode can run stably for more than 100 h. Our work provides a new idea for the design of Co-based catalysts for eNO3RR.

Electronic Supplementary Material

Download File(s)
7038_ESM.pdf (1.3 MB)

References

[1]

Van Langevelde, P. H.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 2021, 5, 290–294.

[2]

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

[3]

Lehnert, N.; Musselman, B. W.; Seefeldt, L. C. Grand challenges in the nitrogen cycle. Chem. Soc. Rev. 2021, 50, 3640–3646.

[4]

Ritchie, S. M. C.; Bhattacharyya, D. Membrane-based hybrid processes for high water recovery and selective inorganic pollutant separation. J. Hazard. Mater. 2002, 92, 21–32.

[5]

Samatya, S.; Kabay, N.; Yüksel, Ü.; Arda, M.; Yüksel, M. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React. Funct. Polym. 2006, 66, 1206–1214.

[6]

Yang, G. C. C.; Lee, H. L. Chemical reduction of nitrate by nanosized iron: Kinetics and pathways. Water Res. 2005, 39, 884–894.

[7]

Gao, J. N.; Jiang, B.; Ni, C. C.; Qi, Y. F.; Zhang, Y. Q.; Oturan, N.; Oturan, M. A. Non-precious Co3O4–TiO2/Ti cathode based electrocatalytic nitrate reduction: Preparation, performance and mechanism. Appl. Catal., B: Environ. 2019, 254, 391–402.

[8]

Gao, Y. H.; Wang, K. P.; Li, S. K.; Zhang, H.; Huang, F. Z. Enhancing the selective electrochemical conversion of nitrate via π back-donation on Lewis acid sites induced by noble-metal doped CoP. J. Mater. Chem. A 2023, 11, 21161–21169.

[9]

Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.

[10]

Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

[11]

Zhang, S.; Li, M.; Li, J. C.; Song, Q. N.; Liu, X. High-ammonia selective metal-organic framework-derived Co-doped Fe/Fe2O3 catalysts for electrochemical nitrate reduction. Proc. Natl. Acad. Sci. USA 2022, 119, e2115504119.

[12]

Wang, J. L.; Zhang, S. B.; Wang, C. C.; Li, K.; Zha, Y. K.; Liu, M.; Zhang, H. M.; Shi, T. F. Ambient ammonia production via electrocatalytic nitrate reduction catalyzed by a flower-like CuCo2O4 electrocatalyst. Inorg. Chem. Front. 2022, 9, 2374–2378.

[13]

Yang, J.; Qi, H. F.; Li, A. Q.; Liu, X. Y.; Yang, X. F.; Zhang, S. X.; Zhao, Q.; Jiang, Q. K.; Su, Y.; Zhang, L. L. et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to Ammonia. J. Am. Chem. Soc. 2022, 144, 12062–12071.

[14]

Zhou, J.; Wen, M.; Huang, R.; Wu, Q. S.; Luo, Y. X.; Tian, Y. K.; Wei, G. F.; Fu, Y. Q. Regulating active hydrogen adsorbed on grain boundary defects of nano-nickel for boosting ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2023, 16, 2611–2620.

[15]

Liu, Y. T.; Qiu, W. X.; Wang, P. F.; Li, R.; Liu, K.; Omer, K. M.; Jin, Z. Y.; Li, P. P. Pyridine-N-rich Cu single-atom catalyst boosts nitrate electroreduction to ammonia. Appl. Catal. B: Environ. 2024, 340, 123228.

[16]

Li, H. M.; Li, S. P.; Guan, R. J.; Jin, Z. Y.; Xiao, D.; Guo, Y.; Li, P. P. Modulating the surface concentration and lifetime of active hydrogen in Cu-based layered double hydroxides for electrocatalytic nitrate reduction to ammonia. ACS Catal. 2024, 14, 12042–12050.

[17]

Li, H. M.; Li, P. P.; Guo, Y.; Jin, Z. Y. Electrochemical probing the site reactivity in iron single-atom catalysts for electrocatalytic nitrate reduction to ammonia. Anal. Chem. 2024, 96, 997–1002.

[18]

Li, R.; Gao, T. T.; Qiu, W. X.; Xie, M. H.; Jin, Z. Y.; Li, P. P. Unveiling the size effect of nitrogen-doped carbon-supported copper-based catalysts on nitrate-to-ammonia electroreduction. Nano Res. 2024, 17, 2438–2443.

[19]

Liu, K.; Li, H. M.; Xie, M. H.; Wang, P. F.; Jin, Z. Y.; Liu, Y. T.; Zhou, M.; Li, P. P.; Yu, G. H. Thermally enhanced relay electrocatalysis of nitrate-to-ammonia reduction over single-atom-alloy oxides. J. Am. Chem. Soc. 2024, 146, 7779–7790.

[20]

Li, P. P.; Liao, L.; Fang, Z. W.; Su, G. H.; Jin, Z. Y.; Yu, G. H. A multifunctional copper single-atom electrocatalyst aerogel for smart sensing and producing ammonia from nitrate. Proc. Natl. Acad. Sci. USA 2023, 120, e2305489120.

[21]

Wang, J.; Cai, C.; Wang, Y. A.; Yang, X. M.; Wu, D. J.; Zhu, Y. M.; Li, M. H.; Gu, M.; Shao, M. H. Electrocatalytic reduction of nitrate to ammonia on low-cost ultrathin CoO x nanosheets. ACS Catal. 2021, 11, 15135–15140.

[22]

Yang, J. Y.; Zhang, W. D.; Zhao, H.; Zou, Y. Z.; Zhang, Z. Y.; Liu, J. Y.; Wang, J.; Gu, Z. G.; Yan, X. D. High-valent cobalt active sites derived from electrochemical activation of metal-organic frameworks for efficient nitrate reduction to ammonia. Appl. Catal., B: Environ. 2024, 340, 123237.

[23]

Han, S. H.; Li, H. J.; Li, T. L.; Chen, F. P.; Yang, R.; Yu, Y. F.; Zhang, B. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Cat. 2023, 6, 402–414.

[24]

Liang, S. Z.; Teng, X.; Xu, H.; Chen, L. S.; Shi, J. L. H* species regulation by Mn-Co(OH)2 for efficient nitrate electro-reduction in neutral solution. Angew. Chem., Int. Ed. 2024, 63, e202400206.

[25]

Liu, H. F.; Qin, J. Z.; Mu, J. C.; Liu, B. J. In situ interface engineered Co/NC derived from ZIF-67 as an efficient electrocatalyst for nitrate reduction to ammonia. J. Colloid Interface Sci. 2023, 636, 134–140

[26]

Chen, X. L.; Zhang, G. W.; Shi, L.; Pan, S. Q.; Liu, W.; Pan, H. Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine. Mater. Sci. Eng.: C 2016, 65, 80–89.

[27]

Wang, Z. J.; Li, B.; Ge, X. M.; Goh, F. W. T.; Zhang, X.; Du, G. J.; Wuu, D.; Liu, Z. L.; Andy Hor, T. S.; Zhang, H. et al. Co@Co3O4@PPD core@bishell nanoparticle-based composite as an efficient electrocatalyst for oxygen reduction reaction. Small 2016, 12, 2580–2587.

[28]

Yu, Z. Q.; Sun, T. Y.; Liu, B. S.; Zhang, L.; Chen, H. J.; Fan, X. S.; Sun, Z. J. Self-rectifying and forming-free nonvolatile memory behavior in single-crystal TiO2 nanowire memory device. J. Alloys Compd. 2021, 858, 157749.

[29]

Zheng, W.; Lu, X. F.; Wang, W.; Li, Z. Y.; Zhang, H. N.; Wang, Y.; Wang, Z. J.; Wang, C. A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers. Sens. Actuators B: Chem. 2009, 142, 61–65.

[30]

Wang, P.; Wang, S.; Zhang, X. M.; Wang, H. Q.; Duan, W.; Han, H. L.; Fan, X. L. Rational construction of CoO/CoF2 coating on burnt-pot inspired 2D CNs as the battery-like electrode for supercapacitors. J. Alloys Compd. 2020, 819, 153374.

[31]

Qin, Y. N.; Sun, Y. J.; Li, Y. J.; Li, C. J.; Wang, L.; Guo, S. J. MOF derived Co3O4/N-doped carbon nanotubes hybrids as efficient catalysts for sensitive detection of H2O2 and glucose. Chin. Chem. Lett. 2020, 31, 774–778.

[32]

Yuan, H. F.; Wang, S. M.; Ma, Z. Z.; Kundu, M.; Tang, B.; Li, J. P.; Wang, X. G. Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride. Chem. Eng. J. 2021, 404, 126474.

[33]

Zhou, A. W.; Guo, R. M.; Zhou, J.; Dou, Y. B.; Chen, Y.; Li, J. R. Pd@ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance heck reaction. ACS Sustain. Chem. Eng. 2018, 6, 2103–2111.

[34]

Zhang, R.; Guo, Y.; Zhang, S. C.; Chen, D.; Zhao, Y. W.; Huang, Z. D.; Ma, L. T.; Li, P.; Yang, Q.; Liang, G. J. et al. Efficient ammonia electrosynthesis and energy conversion through a Zn-nitrate battery by iron doping engineered nickel phosphide catalyst. Adv. Energy Mater. 2022, 12, 2103872.

[35]

Wan, S. H.; Qi, J.; Zhang, W.; Wang, W. N.; Zhang, S. K.; Liu, K. Q.; Zheng, H. Q.; Sun, J. L.; Wang, S. Y.; Cao, R. Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 2017, 29, 1700286.

[36]

Rauwel, E.; Al-Arag, S.; Salehi, H.; Amorim, C. O.; Cuisinier, F.; Guha, M.; Rosario, M. S.; Rauwel, P. Assessing cobalt metal nanoparticles uptake by cancer cells using live Raman spectroscopy. Int. J. Nanomed. 2020, 15, 7051–7062.

Nano Research
Article number: 94907038
Cite this article:
Fu Y, Yang X, Yu Y, et al. Dynamic evolution of Co species and morphological reconstruction on Co-N-C during the nitrate reduction reaction in neutral solution. Nano Research, 2025, 18(1): 94907038. https://doi.org/10.26599/NR.2025.94907038
Topics:

968

Views

249

Downloads

2

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 04 August 2024
Revised: 31 August 2024
Accepted: 18 September 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return