AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (19.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

In situ polymerization of poly(3,4-ethylenedioxythiophene) protective layer towards stable zinc anode

Debin Luo1Peng Zhou1Xiaowei Lv1,2 ( )Panpan Sun1Xiaohua Sun1 ( )Hewei Zhao3 ( )
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
Hubei Three Gorges Laboratory, Yichang 443007, China
School of Chemistry, Beihang University, Beijing 100191, China
Show Author Information

Graphical Abstract

Hydrophilic poly(3,4-ethylenedioxythiophene) was first used for zinc anode artificial interface protection by a simple electrodeposition method. This protective layer effectively promotes the Zn2+ de-solvation process and inhibits side reactions and dendrite growth, ultimately significantly improving the cyclic stability of symmetric batteries and devices.

Abstract

Aqueous zinc-ion devices are considered promising candidates for energy storage due to their high safety, low cost and relatively high energy density. However, the dendrite growth, hydrogen evolution reaction (HER) and corrosion of the zinc anode significantly limit the development of Zn-ion devices. Here, an inexpensive poly(3,4-ethylenedioxythiophene) (PEDOT) protective layer was constructed in situ on the Zn surface using electro-polymerization to suppress dendrite growth and side reactions, thereby enhancing the reversibility of Zn. Experimental and theoretical calculations revealed that this hydrophilic protective layer promotes the desolvation process of hydrated Zn2+ and facilitates the transport of zinc ions, thus improving the thermodynamic and kinetic properties of Zn2+ deposition and inhibiting interfacial side reactions. Consequently, the optimized PEDOT@Zn symmetric battery exhibited a cycling stability exceeding 1250 h at 0.5 mA·cm−2 and 0.25 mAh·cm−2, with a significantly reduced overpotential (from 91.8 to 35 mV). With the assistance of the PEDOT protective layer, the PEDOT@Zn//Cu battery maintained approximately 99.5% Coulombic efficiency after 450 cycles. Ex-situ scanning electron microscopy (SEM) and in situ optical microscopy characterizations further confirmed that the PEDOT protective layer can effectively suppress the growth of zinc dendrites. Additionally, the Zn-ion capacitors assembled by the PEDOT@Zn and activated carbon also demonstrated outstanding cycling stability.

Electronic Supplementary Material

Download File(s)
7037_ESM.pdf (1.5 MB)

References

[1]

Li, B.; Liu, S. D.; Geng, Y. F.; Mao, C. W.; Dai, L.; Wang, L.; Jun, S. C.; Lu, B. G.; He, Z. X.; Zhou, J. Achieving stable zinc metal anode via polyaniline interface regulation of Zn ion flux and desolvation. Adv. Funct. Mater. 2024, 34, 2214033.

[2]

Zhang, Y. Z.; Cao, Z. J.; Liu, S. J.; Du, Z. G.; Cui, Y. L. S.; Gu, J. N.; Shi, Y. Z.; Li, B.; Yang, S. B. Charge-enriched strategy based on mxene-based polypyrrole layers toward dendrite-free zinc metal anodes. Adv. Energy Mater. 2022, 12, 2103979.

[3]

He, H. B.; Qin, H. Y.; Wu, J.; Chen, X. F.; Huang, R. S.; Shen, F.; Wu, Z. R.; Chen, G. N.; Yin, S. B.; Liu, J. Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy Storage Mater. 2021, 43, 317–336.

[4]

Li, X. J.; Tang, Y. C.; Lv, H. M.; Wang, W. L.; Mo, F. N.; Liang, G. J.; Zhi, C. Y.; Li, H. F. Recent advances in flexible aqueous zinc-based rechargeable batteries. Nanoscale 2019, 11, 17992–18008.

[5]

Tao, F.; Liu, Y.; Ren, X. Y.; Wang, J.; Zhou, Y. Z.; Miao, Y. J.; Ren, F. Z.; Wei, S. Z.; Ma, J. M. Different surface modification methods and coating materials of zinc metal anode. J. Energy Chem. 2022, 66, 397–412.

[6]

Zhao, L. L.; Zhao, S.; Zhang, N.; Wang, P. F.; Liu, Z. L.; Xie, Y.; Shu, J.; Yi, T. F. Construction of stable Zn metal anode by inorganic functional protective layer toward long-life aqueous Zn-ion battery. Energy Storage Mater. 2024, 71, 103628.

[7]

Wang, T. T.; Li, C. P.; Xie, X. S.; Lu, B. G.; He, Z. X.; Liang, S. Q.; Zhou, J. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives. ACS Nano 2020, 14, 16321–16347.

[8]

Wang, C. L.; Gao, Y. X.; Sun, L. S.; Zhao, Y.; Yin, D. M.; Wang, H. R.; Cao, J. C.; Cheng, Y.; Wang, L. M. Anti-catalytic and zincophilic layers integrated zinc anode towards efficient aqueous batteries for ultra-long cycling stability. Nano Res. 2022, 15, 8076–8082.

[9]

Zhu, Z. H.; Jin, H. R.; Xie, K. F.; Dai, S. M.; Luo, Y. X.; Qi, B.; Wang, Z. D.; Zhuang, X. Y.; Liu, K. S.; Hu, B. et al. Molecular-level Zn-ion transfer pump specifically functioning on (002) facets enables durable Zn anodes. Small 2022, 18, 2204713.

[10]

Shi, M. Y.; Zhang, J. L.; Tang, G. C.; Wang, B.; Wang, S.; Ren, X. X.; Li, G. J.; Chen, W. H.; Liu, C. T.; Shen, C. Y. Polyzwitterionic cross-linked double network hydrogel electrolyte enabling high-stable Zn anode. Nano Res. 2024, 17, 5278–5287.

[11]

Li, Y. H.; Yao, H.; Liu, X. J.; Yang, X. T.; Yuan, D. Roles of electrolyte additive in Zn chemistry. Nano Res. 2023, 16, 9179–9194.

[12]

Zhou, S.; Meng, X. Y.; Chen, Y. N.; Li, J. W.; Lin, S. Y.; Han, C.; Ji, X. B.; Chang, Z.; Pan, A. Q. Zinc-ion anchor induced highly reversible Zn anodes for high performance Zn-ion batteries. Angew. Chem., Int. Ed. 2024, 136, e202403050.

[13]

Zheng, T.; Huang, Z. N.; Ge, H. Y.; Hu, P. F.; Fan, X. Y.; Jia, B. B. Applying machine learning to design delicate amorphous micro-nano materials for rechargeable batteries. Energy Storage Mater. 2024, 71, 103614.

[14]

Zhang, B. H.; Jiang, T.; Zhou, X. Y.; Fan, X. Y.; Jia, B. B.; Li, L. D. Unlocking supercapacitive energy storage potential: Catalyzing electrochemically inactive manganese oxides to active MnO2 via heterostructure reconstruction. Nano Res. 2024, 17, 5897–5906.

[15]

Sun, B. H.; Xu, M. Y.; Li, X. X.; Zhang, B. H.; Hao, R.; Fan, X. Y.; Jia, B. B.; She, D. S. Unlocking single-atom catalysts via amorphous substrates. Nano Res. 2024, 17, 3533–3546.

[16]

Lee, K.; Kim, E. J.; Kim, J.; Kim, K. H.; Lee, Y. J.; Lee, M. J.; Ryu, K.; Shin, S.; Choi, J.; Kwon, S. H. et al. Coordination engineering of N, O Co-doped cu single atom on porous carbon for high performance zinc metal anodes. Adv. Energy Mater. 2024, 14, 2303803.

[17]

Qu, M.; Chen, Z.; Sun, Z. Y.; Zhou, D. N.; Xu, W. J.; Tang, H.; Gu, H. F.; Liang, T.; Hu, P. F.; Li, G. W. et al. Rational design of asymmetric atomic Ni-P1N3 active sites for promoting electrochemical CO2 reduction. Nano Res. 2023, 16, 2170–2176.

[18]

Yang, S. N.; Du, H. X.; Li, Y. T.; Wu, X. S.; Xiao, B. S.; He, Z. X.; Zhang, Q. B.; Wu, X. W. Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries. Green Energy Environ. 2023, 8, 1531–1552.

[19]

Cao, Z. Y.; Zhu, X. D.; Xu, D. X.; Dong, P.; Chee, M. O. L.; Li, X. J.; Zhu, K. Y.; Ye, M. X.; Shen, J. F. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 2021, 36, 132–138.

[20]

He, H. B.; Tong, H.; Song, X. Y.; Song, X. P.; Liu, J. Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 2020, 8, 7836–7846.

[21]

Xu, Y.; Zheng, X. H.; Sun, J. F.; Wang, W. P.; Wang, M. M.; Yuan, Y.; Chuai, M.; Chen, N.; Hu, H. L.; Chen, W. Nucleophilic interfacial layer enables stable Zn anodes for aqueous Zn batteries. Nano Lett. 2022, 22, 3298–3306.

[22]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[23]

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

[24]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[25]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[26]

Blöchl, P. E.; Först, C. J.; Schimpl, J. Projector augmented wave method: Ab initio molecular dynamics with full wave functions. Bull. Mater. Sci. 2003, 26, 33–41.

[27]

Poverenov, E.; Li, M.; Bitler, A.; Bendikov, M. Major effect of electropolymerization solvent on morphology and electrochromic properties of PEDOT films. Chem. Mater. 2010, 22, 4019–4025.

[28]

Shi, Y. D.; Zhang, Y.; Tang, K.; Song, Y. B.; Cui, J. W.; Shu, X.; Wang, Y.; Liu, J. Q.; Wu, Y. C. In situ growth of PEDOT/graphene oxide nanostructures with enhanced electrochromic performance. RSC Adv. 2018, 8, 13679–13685.

[29]

Stempien, Z.; Rybicki, E.; Rybicki, T.; Kozanecki, M. Reactive inkjet printing of PEDOT electroconductive layers on textile surfaces. Synth. Met. 2016, 217, 276–287.

[30]

Drewelow, G.; Song, H. W.; Jiang, Z. T.; Lee, S. Factors controlling conductivity of PEDOT deposited using oxidative chemical vapor deposition. Appl. Surf. Sci. 2020, 501, 144105.

[31]

Zhao, W.; Perera, I. P.; Khanna, H. S.; Dang, Y. L.; Li, M. X.; Posada, L. F.; Tan, H. Y.; Suib, S. L. Modification of zinc anodes by in situ ZnO coating for high-performance aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2024, 7, 1172–1181.

[32]

Kang, L. T.; Cui, M. W.; Jiang, F. Y.; Gao, Y. F.; Luo, H. J.; Liu, J. J.; Liang, W.; Zhi, C. Y. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 2018, 8, 1801090.

[33]

Sui, B. B.; Sha, L.; Wang, P. F.; Gong, Z.; Zhang, Y. H.; Wu, Y. H.; Zhao, L. N.; Tang, J. J.; Shi, F. N. Salt solution etching to construct micro-gullies on the surface of Zn anodes enhances anodes performance in aqueous zinc-ion batteries. J. Colloid Interface Sci. 2024, 653, 159–169.

[34]

Sha, L.; Sui, B. B.; Wang, P. F.; Gong, Z.; Zhang, Y. H.; Wu, Y. H.; Zhao, L. N.; Shi, F. N. Printing 3D mesh-like grooves on zinc surface to enhance the stability of aqueous zinc ion batteries. J. Colloid Interface Sci. 2023, 647, 421–428.

[35]

Zhou, J. H.; Wu, F.; Mei, Y.; Hao, Y. T.; Li, L.; Xie, M.; Chen, R. J. Establishing thermal infusion method for stable zinc metal anodes in aqueous zinc-ion batteries. Adv. Mater. 2022, 34, 2200782.

[36]

Zhang, X. T.; Li, J. X.; Liu, D. Y.; Liu, M. K.; Zhou, T. S.; Qi, K. W.; Shi, L.; Zhu, Y. C.; Qian, Y. T. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 2021, 14, 3120–3129.

[37]

Kim, J. Y.; Liu, G. C.; Shim, G. Y.; Kim, H.; Lee, J. K. Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv. Funct. Mater. 2020, 30, 2004210.

[38]

Zhang, N. N.; Huang, S.; Yuan, Z. S.; Zhu, J. C.; Zhao, Z. F.; Niu, Z. Q. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 2861–2865.

[39]

Xie, X. S.; Liang, S. Q.; Gao, J. W.; Guo, S.; Guo, J. B.; Wang, C.; Xu, G. Y.; Wu, X. W.; Chen, G.; Zhou, J. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 2020, 13, 503–510.

[40]

Gou, Q. Z.; Chen, Z. Y.; Luo, H. R.; Deng, J. B.; Zhang, B.; Xu, N.; Cui, J. Y.; Zheng, Y. J.; Li, M.; Li, J. Synergistic modulation of mass transfer and parasitic reactions of Zn metal anode via bioinspired artificial protection layer. Small 2024, 20, 2305902.

[41]

Chen, X. H.; Shi, X. D.; Ruan, P. C.; Tang, Y.; Sun, Y. Y.; Wong, W. Y.; Lu, B. G.; Zhou, J. Construction of an artificial interfacial layer with porous structure toward stable zinc-metal anodes. Small Sci. 2023, 3, 2300007.

[42]

Huyan, X. D.; Yi, Z. H.; Sang, Z. Y.; Tan, S. D.; Liu, J. X.; Chen, R.; Si, W. P.; Liang, J.; Hou, F. Polyethylene glycol coating on zinc powder surface: Applications in dendrite-free zinc anodes with enhanced utilization rate. Appl. Surf. Sci. 2023, 614, 156209.

[43]

Wu, Y.; Zhang, T.; Chen, L. N.; Zhu, Z. H.; Cheng, L. K.; Gu, S.; Li, Z. Q.; Tong, Z. Q.; Li, H.; Li, Y. F. et al. Polymer chain-guided ion transport in aqueous electrolytes of Zn-ion batteries. Adv. Energy Mater. 2023, 13, 2300719.

[44]

Qin, Y.; Wang, X. Preventing dissolution of cathode active materials by ion-anchoring zeolite-based separators for durable aqueous zinc batteries. Angew. Chem., Int. Ed. 2024, 63, e202315464.

[45]

Liu, S. Y.; Li, S. J.; Li, Y. Research progress on energy storage and anode protection of aqueous zinc-ion battery. ChemElectroChem 2024, 11, e202400188.

[46]

Wang, S. J.; Yang, Z.; Chen, B. T.; Zhou, H.; Wan, S. F.; Hu, L. Z.; Qiu, M.; Qie, L.; Yu, Y. A highly reversible, dendrite-free zinc metal anodes enabled by a dual-layered interface. Energy Storage Mater. 2022, 47, 491–499.

[47]

Hao, J. N.; Li, B.; Li, X. L.; Zeng, X. H.; Zhang, S. L.; Yang, F. H.; Liu, S. L.; Li, D.; Wu, C.; Guo, Z. P. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 2020, 32, 2003021.

[48]

Li, J. B.; Zhang, S. M.; Wu, Y.; Jin, B. W.; Shao, M. F. The ultrathin prenucleation interface-stabilized metal Zn anode toward high-performance flexible Zn-batteries. Mater. Today Energy 2021, 22, 100849.

[49]

Han, J.; Euchner, H.; Kuenzel, M.; Hosseini, S. M.; Groß, A.; Varzi, A.; Passerini, S. A thin and uniform fluoride-based artificial interphase for the zinc metal anode enabling reversible Zn/MnO2 batteries. ACS Energy Lett. 2021, 6, 3063–3071.

[50]

Cai, Z.; Wang, J. D.; Sun, Y. M. Anode corrosion in aqueous Zn metal batteries. eScience 2023, 3, 100093.

[51]

Bayaguud, A.; Fu, Y. P.; Zhu, C. B. Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies. J. Energy Chem. 2022, 64, 246–262.

[52]

Chen, M.; Guo, X. J.; Jiang, X.; Farhadi, B.; Guo, X.; Zhu, Y.; Zhang, H. X.; Liu, S. Z. Multi-group polymer coating on Zn anode for high overall conversion efficiency photorechargeable zinc-ion batteries. Angew. Chem., Int. Ed. 2024, 63, e202410011

[53]

Zhao, N. N.; Zhang, Y. T.; Zhang, Z. K.; Han, C.; Liang, Y. Y.; Li, J. T.; Wang, X. L.; Dai, L.; Wang, L.; He, Z. X. Polyaniline functionalized separator as synergistic medium for aqueous zinc-ion batteries. J. Colloid Interface Sci. 2023, 642, 421–429.

[54]

Lv, D.; Peng, H. L.; Wang, C.; Liu, H. X.; Wang, D. D.; Yang, J.; Qian, Y. T. Rational screening of metal coating on Zn anode for ultrahigh-cumulative-capacity aqueous zinc metal batteries. J. Energy Chem. 2023, 84, 81–88.

[55]

Shen, Y. F.; Liu, Y.; Sun, K. S.; Gu, T. T.; Wang, G.; Yang, Y.; Pang, J. X.; Zheng, Y.; Yang, X. D.; Chen, L. Zincophilic Ti3C2Cl2 MXene and anti-corrosive Cu NPs for synergistically regulated deposition of dendrite-free Zn metal anode. J. Mater. Sci. Technol. 2024, 169, 137–147.

[56]

Wang, Y. J.; Sun, H. Y.; Li, N.; Chen, K. Y.; Yang, X. B.; Liu, H. Y.; Zheng, G. M.; Liu, J.; Wu, Z. J.; Zhai, L. P. et al. Highly reversible and stable zinc anode enabled by a fully conjugated porous organic polymer protective layer. ACS Appl. Energy Mater. 2022, 5, 2375–2383.

[57]

Zeng, Y. X.; Zhang, X. Y.; Qin, R. F.; Liu, X. Q.; Fang, P. P.; Zheng, D. Z.; Tong, Y. X.; Lu, X. H. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 2019, 31, 1903675.

[58]

Yang, J. Z.; Wang, S.; Du, L. Y.; Bi, S. S.; Zhu, J. C.; Liu, L. L.; Niu, Z. Q. Thermal-cyclized polyacrylonitrile artificial protective layers toward stable zinc anodes for aqueous zinc-based batteries. Adv. Funct. Mater. 2024, 34, 2314426.

[59]

Zhao, S. Y.; Liu, X. T.; Chang, T.; Tang, H. Q.; Tian, T.; Weng, Q.; Liu, T. Achieving stable Zn anodes by reducing desolvation barrier and guiding homogeneous nucleation through zincophilic polymer layer. Energy Storage Mater. 2024, 72, 103769.

[60]

Zhang, F.; Qian, J. W.; Dong, W. X.; Qu, Y. F.; Chen, J. W.; Wang, H.; Chen, L. F. A facile tip shielding strategy for highly reversible Zn anode. Chem. Eng. J. 2023, 478, 147406.

[61]

Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949.

[62]

Li, L.; Yang, H.; Yuan, Z. Y.; Tan, Y. C.; Zhang, Y. M.; Miao, C. L.; Chen, D.; Li, G. S.; Han, W. The organic ligand etching method for constructing in situ terraced protective layer toward stable aqueous Zn anode. Small 2023, 19, 2305554.

[63]

Shen, Y. F.; Fu, P. J.; Liu, J. J.; Sun, K. S.; Wen, H. Z.; Liu, P.; Lv, H.; Gu, T. T.; Yang, X. D.; Chen, L. Highly stable Zn anodes realized by 3D zincophilic and hydrophobic interphase buffer layer. Nano Res. Energy 2024, 3, e9120115.

[64]

Wu, M. M.; Wang, X. C.; Zhang, F.; Xiang, Q.; Li, Y.; Guo, J. X. Highly reversible and stable Zn metal anodes realized using a trifluoroacetamide electrolyte additive. Energy Environ. Sci. 2024, 17, 619–629.

[65]

Hao, J. N.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Zhang, S.; Bo, G. Y.; Wang, C. S.; Guo, Z. P. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 2020, 30, 2001263.

[66]

Chen, P.; Yuan, X. H.; Xia, Y. B.; Zhang, Y.; Fu, L. J.; Liu, L. L.; Yu, N. F.; Huang, Q. H.; Wang, B.; Hu, X. W. et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 2021, 8, 2100309.

[67]

Shin, J.; Lee, J.; Kim, Y.; Park, Y.; Kim, M.; Choi, J. W. Highly reversible, grain-directed zinc deposition in aqueous zinc ion batteries. Adv. Energy Mater. 2021, 11, 2100676.

[68]

Nie, W.; Cheng, H. W.; Sun, Q. C.; Liang, S. Q.; Lu, X. G.; Lu, B. G.; Zhou, J. Design strategies toward high-performance Zn metal anode. Small Methods 2024, 8, 2201572.

[69]

Zhao, N. N.; Liang, Y. Y.; Huo, W. J.; Zhu, X. Y.; He, Z. X.; Zhang, Z. K.; Zhang, Y. T.; Wu, X. W.; Dai, L.; Zhu, J. et al. Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters 2024, 35, 109332.

Nano Research
Article number: 94907037
Cite this article:
Luo D, Zhou P, Lv X, et al. In situ polymerization of poly(3,4-ethylenedioxythiophene) protective layer towards stable zinc anode. Nano Research, 2025, 18(1): 94907037. https://doi.org/10.26599/NR.2025.94907037
Topics:

412

Views

79

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 31 July 2024
Revised: 03 September 2024
Accepted: 15 September 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return