AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (45.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

In-situ polymerized strategy of hydrophilic route as a novel bionic membrane for removal ciprofloxacin from water

Yacong Hu1,§Ruobing Yang1,§Xiangqing Wang1Hongcui Ma1Yuexin Guo1,2( )Shuhuan Wang1( )Zitong Wu1
Department of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

§ Yacong Hu and Ruobing Yang contributed equally to this work.

Show Author Information

Graphical Abstract

Inspired by the hydrophobic–hydrophilic structure of beetle carapaces, UiO-66-NH2 bionic membranes were prepared by a novel in-situ polymerization method. Water channels were created by crosslinking the UiO-66-NH2 nanoparticles. UiO-66-NH2 columns were fabricated by the same approach. Compared with the commercially available hydrophilic−lipophilic balance column, the column has a larger saturation penetration volume and better removal effect.

Abstract

There are major environmental risks associated with antibiotic contamination in water, such as difficulty in removal, bioaccumulation, and ecotoxicity. Inspired by the hydrophobic–hydrophilic structure of beetle carapaces, bionic membrane and column of UiO-66-NH2 were prepared by a novel in-situ polymerization method. As the aqueous solution passes through the obtained membrane, the solution is more inclined toward the hydrophilic UiO-66-NH2 particles and the water channels than the hydrophobic substrate, promoting adsorption efficiency. The same method can be used to manufacture columns with better performance than commercially available hydrophilic–lipophilic balance columns, suitable for processing large volumes of liquid. In this work, the effects of pH, adsorbent dosage, time, and temperature on the adsorption of ciprofloxacin (CIP) were studied. Moreover, the static adsorption thermodynamics, kinetics, and dynamic adsorption were investigated. The sorption could be appropriately described by the Langmuir isotherm model. Thermodynamic studies revealed that the adsorption process was spontaneous (ΔG < 0) and endothermic (ΔH > 0) with entropy generation (ΔS > 0). The UiO-66-NH2 adsorption column exhibited an excellent dynamic adsorption effect on CIP. The study findings suggest that the prepared membrane and adsorption column exhibit promising abilities in removing CIP from solutions.

Electronic Supplementary Material

Download File(s)
7036_ESM.pdf (1.4 MB)

References

[1]

Furukawa, H.; Cordova, K. E.; O' Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 2013, 341, 1230444.

[2]

Shen, L. J.; Liang, S. J.; Wu, W. M.; Liang, R. W.; Wu, L. Multifunctional NH2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). Dalton Trans. 2013, 42, 13649–13657.

[3]

Pattappan, D.; Vargheese, S.; Kavya, K. V.; Kumar, R. T. R.; Haldorai, Y. Metal–organic frameworks with different oxidation states of metal nodes and aminoterephthalic acid ligand for degradation of Rhodamine B under solar light. Chemosphere 2022, 286, 131726.

[4]

Ke, Y. J.; Zhang, J. X.; Peng, X.; Zhang, Z. Y.; Wang, X.; Qi, W.; Wang, M. F. A facile strategy to construct MOF-based nanocatalyst with enhanced activity and selectivity in oxytetracycline degradation. Nano Res. 2024, 17, 5863–5871.

[5]

Gamage, N. D. H.; McDonald, K. A.; Matzger, A. J. MOF-5-polystyrene: Direct production from monomer, improved hydrolytic stability, and unique guest adsorption. Angew. Chem., Int. Ed. 2016, 55, 12099–12103.

[6]

Liu, H. L.; Zhang, X.; Lv, Z. X.; Wei, F.; Liang, Q.; Qian, L. J.; Li, Z.; Chen, X. M.; Wu, W. S. Ternary heterostructure membranes with two-dimensional tunable channels for highly selective ion separation. JACS Au 2023, 3, 3089–3100.

[7]

Azhar, M. R.; Abid, H. R.; Periasamy, V.; Sun, H. Q.; Tade, M. O.; Wang, S. B. Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment. J. Colloid Interface Sci. 2017, 500, 88–95.

[8]

Ahmadijokani, F.; Molavi, H.; Rezakazemi, M.; Tajahmadi, S.; Bahi, A.; Ko, F.; Aminabhavi, T. M.; Li, J. R.; Arjmand, M. UiO-66 metal–organic frameworks in water treatment: A critical review. Prog. Mater. Sci. 2022, 125, 100904.

[9]

Chen, Q.; He, Q. Q.; Lv, M. M.; Xu, Y. L.; Yang, H. B.; Liu, X. T.; Wei, F. Y. Selective adsorption of cationic dyes by UiO-66-NH2. Appl. Surf. Sci. 2015, 327, 77–85.

[10]

Wang, C. H.; Liu, X. L.; Chen, J. P.; Li, K. Superior removal of arsenic from water with zirconium metal–organic framework UiO-66. Sci. Rep. 2015, 5, 16613.

[11]

Lin, K. Y. A.; Chen, S. Y.; Jochems, A. P. Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine. Mater. Chem. Phys. 2015, 160, 168–176.

[12]

Tang, H.; Jia, W.; Li, W. Gel-to-crystal route towards MOF-mixed MOF-matrix membranes. Mater. Today Chem. 2022, 24, 100867.

[13]

Hou, Q. Q.; Zhou, S.; Wei, Y. Y.; Caro, J.; Wang, H. H. Balancing the grain boundary structure and the framework flexibility through bimetallic metal–organic framework (MOF) membranes for gas separation. J. Am. Chem. Soc. 2020, 142, 9582–9586.

[14]

Cai, J. H.; Song, S. Z.; Zhu, L. J.; Lu, Q. P.; Lu, Z.; Wei, Y. Y.; Wang, H. H. Two-dimensional Cu-porphyrin nanosheet membranes for nanofiltration. Nano Res. 2023, 16, 6290–6297.

[15]

Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Mixed-matrix membranes. Angew. Chem., Int. Ed. 2017, 56, 9292–9310.

[16]

Bachman, J. E.; Smith, Z. P.; Li, T.; Xu, T.; Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. Nat. Mater. 2016, 15, 845–849.

[17]

Muldoon, P. F.; Venna, S. R.; Gidley, D. W.; Baker, J. S.; Zhu, L. X.; Tong, Z.; Xiang, F. M.; Hopkinson, D. P.; Yi, S. L.; Sekizkardes, A. K. et al. Mixed matrix membranes from a microporous polymer blend and nanosized metal–organic frameworks with exceptional CO2/N2 separation performance. ACS Mater. Lett. 2020, 2, 821–828.

[18]

Yu, S. W.; Li, C. E.; Zhao, S. K.; Chai, M.; Hou, J. W.; Lin, R. J. Recent advances in the interfacial engineering of MOF-based mixed matrix membranes for gas separation. Nanoscale 2024, 16, 7716–7733.

[19]

Guo, Y. X.; Jia, Z. Q. Novel sandwich structure adsorptive membranes for removal of 4-nitrotoluene from water. J. Hazard. Mater. 2016, 317, 295–302.

[20]

Jiao, C. L.; Song, X. J.; Zhang, X. Q.; Sun, L. X.; Jiang, H. Q. MOF-mediated interfacial polymerization to fabricate polyamide membranes with a homogeneous nanoscale striped turing structure for CO2/CH4 separation. ACS Appl. Mater. Interfaces 2021, 13, 18380–18388.

[21]

Parker, A. R.; Lawrence, C. R. Water capture by a desert beetle. Nature 2001, 414, 33–34.

[22]

Daraei, P.; Madaeni, S. S.; Ghaemi, N.; Salehi, E.; Khadivi, M. A.; Moradian, R.; Astinchap, B. Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water. J. Membr. Sci. 2012, 415–416, 250–259.

[23]

Zeng, X. J.; Qian, L.; Yuan, X. X.; Zhou, C. L.; Li, Z. W.; Cheng, J.; Xu, S. P.; Wang, S. F.; Pi, P. H.; Wen, X. F. Inspired by Stenocara beetles: From water collection to high-efficiency water-in-oil emulsion separation. ACS Nano 2017, 11, 760–769.

[24]

Qiu, M.; Wang, J. X.; He, C. J. A stable and hydrophilic substrate for thin-film composite forward osmosis membrane revealed by in- situ cross-linked polymerization. Desalination 2018, 433, 1–9.

[25]

Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.

[26]

Wang, Y. L.; Zhang, S.; Zhao, Y. F.; Bedia, J.; Rodriguez, J. J.; Belver, C. UiO-66-based metal organic frameworks for the photodegradation of acetaminophen under simulated solar irradiation. J. Environ. Chem. Eng. 2021, 9, 106087.

[27]

Lin, K. Y. A.; Liu, Y. T.; Chen, S. Y. Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies. J. Colloid Interface Sci. 2016, 461, 79–87.

[28]

Rodrigues, M. A.; de Souza Ribeiro, J.; de Souza Costa, E.; de Miranda, J. L.; Ferraz, H. C. Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Sep. Purif. Technol. 2018, 192, 491–500.

[29]

Xu, X. Y.; Chu, C.; Fu, H. F.; Du, X. D.; Wang, P.; Zheng, W. W.; Wang, C. C. Light-responsive UiO-66-NH2/Ag3PO4 MOF-nanoparticle composites for the capture and release of sulfamethoxazole. Chem. Eng. J. 2018, 350, 436–444.

[30]

Kandiah, M.; Usseglio, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P.; Tilset, M. Post-synthetic modification of the metal–organic framework compound UiO-66. J. Mater. Chem. 2010, 20, 9848–9851.

[31]

Ahmadi, R.; Fatahi, R. F. N.; Sangpour, P.; Bagheri, M.; Rahimi, T. Evaluation of antibacterial behavior of in situ grown CuO–GO nanocomposites. Mater. Today Commun. 2021, 28, 102642.

[32]

Fang, X.; Wu, S. B.; Wu, Y. H.; Yang, W.; Li, Y. L.; He, J. Y.; Hong, P. D.; Nie, M. X.; Xie, C.; Wu, Z. J. et al. High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: Dynamics, thermodynamics, and mechanisms. Appl. Surf. Sci. 2020, 518, 146226.

[33]

Tang, C. Y.; Kwon, Y. N.; Leckie, J. O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination 2009, 242, 149–167.

[34]

Igwegbe, C. A.; Oba, S. N.; Aniagor, C. O.; Adeniyi, A. G.; Ighalo, J. O. Adsorption of ciprofloxacin from water: A comprehensive review. J. Ind. Eng. Chem. 2021, 93, 57–77.

[35]

Ibrahim, A. H.; El-Mehalmey, W. A.; Haikal, R. R.; Safy, M. E. A.; Amin, M.; Shatla, H. R.; Karakalos, S. G.; Alkordi, M. H. Tuning the chemical environment within the UiO-66-NH2 nanocages for charge-dependent contaminant uptake and selectivity. Inorg. Chem. 2019, 58, 15078–15087.

[36]

Wu, G. G.; Ma, J. P.; Li, S.; Guan, J.; Jiang, B.; Wang, L. Y.; Li, J. H.; Wang, X. Y.; Chen, L. X. Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions. J. Colloid Interface Sci. 2018, 528, 360–371.

[37]

Cao, E. J.; Duan, W. Z.; Wang, A. Q.; Zheng, Y. A. Oriented growth of poly( m-phenylenediamine) on Calotropis gigantea fiber for rapid adsorption of ciprofloxacin. Chemosphere 2017, 171, 223–230.

[38]

Mao, H. X.; Wang, S. K.; Lin, J. Y.; Wang, Z. S.; Ren, J. Modification of a magnetic carbon composite for ciprofloxacin adsorption. J. Environ. Sci. 2016, 49, 179–188.

[39]

Seo, P. W.; Khan, N. A.; Jhung, S. H. Removal of nitroimidazole antibiotics from water by adsorption over metal–organic frameworks modified with urea or melamine. Chem. Eng. J. 2017, 315, 92–100.

[40]

Rizzo, C.; Marullo, S.; D'Anna, F. Carbon-based ionic liquid gels: Alternative adsorbents for pharmaceutically active compounds in wastewater. Environ. Sci.: Nano 2021, 8, 131–145.

[41]

Ren, L. F.; Zhang, S. Q.; Ma, Z. B.; Qiu, Y. B.; Ying, D. W.; Jia, J. P.; Shao, J. H.; He, Y. L. Antibiotics separation from saline wastewater by nanofiltration membrane based on tannic acid-ferric ions coordination complexes. Desalination 2022, 541, 116034.

[42]

Amaly, N.; El-Moghazy, A. Y.; Sun, G.; Pandey, P. K. Effective tetracycline removal from liquid streams of dairy manure via hierarchical poly (vinyl alcohol- co-ethylene)/polyaniline metal complex nanofibrous membranes. J. Colloid Interface Sci. 2021, 597, 9–20.

[43]

Verma, V. K.; Subbiah, S. Sericin-coated polymeric microfiltration membrane for removal of drug-based micropollutants. J. Chem. Technol. Biotechnol. 2019, 94, 3625–3636.

[44]

Zhou, M. D.; Li, C. X.; Zhao, L. X.; Ning, J.; Pan, X. F.; Cai, G. J.; Zhu, G. F. Synergetic effect of nano zero-valent iron and activated carbon on high-level ciprofloxacin removal in hydrolysis-acidogenesis of anaerobic digestion. Sci. Total Environ. 2021, 752, 142261.

[45]

Yu, B. B.; Chang, H. C.; Wei, W. W.; Yu, H.; Chen, Z. X.; Cheng, X. Y.; Chen, D.; Jin, Y. X.; Han, D. M.; Xu, W. Highly effective removal of ciprofloxacin antibiotic from water by magnetic metal–organic framework. Water 2023, 15, 2531.

[46]

Xu, Z. C.; Song, X. Y.; Li, Y.; Li, G. X.; Luo, W. H. Removal of antibiotics by sequencing-batch membrane bioreactor for swine wastewater treatment. Sci. Total Environ. 2019, 684, 23–30.

Nano Research
Article number: 94907036
Cite this article:
Hu Y, Yang R, Wang X, et al. In-situ polymerized strategy of hydrophilic route as a novel bionic membrane for removal ciprofloxacin from water. Nano Research, 2025, 18(1): 94907036. https://doi.org/10.26599/NR.2025.94907036
Topics:

411

Views

58

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 July 2024
Revised: 12 September 2024
Accepted: 15 September 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return