AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (26.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Carbon nanotube incorporation and framework protonation-regulated energy band for enhanced photocatalytic hydrogen peroxide production of COF

Luanying YangWenxin LvYueyue WangYi Wang( )
Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201600, China
Show Author Information

Graphical Abstract

A novel tubular nanocomposite (CNT@COF-H) by uniformly coating a protonated triazine-based covalent organic framework (COF) with imine linkages onto carbon nanotubes (CNTs) was prepared. Comprehensive studies revealed that imine protonation improved substrate accessibility, while the integrated CNTs served as electron transporters, expanding light absorption and reducing charge recombination, thereby enhancing solar-powered H2O2 production.

Abstract

Covalent organic frameworks (COFs) were the promising solar catalysts for producing hydrogen peroxide (H2O2). However, they remain suffered from poor light absorption, slow charge separation, and limited substrate accessibility. To address these issues, we synthesized an imine-linked triazine-based COF directly onto carbon nanotubes (CNTs) through an interface-mediated Schiff base reaction, creating a tubular nano-complex designated as CNT@COF. Protonation of the imine bonds in the resulting CNT@COF-H significantly enhanced its photocatalytic H2O2 production, achieving a rate of 790.5 μM·h−1 under one sunlight irradiation. This performance outshines that of the unmodified COF and surpasses many other COF-based materials. Further studies revealed that protonation improved substrate accessibility, while the integrated CNTs acted as electron transporters to expand light absorption and reduce charge recombination, thereby enhancing photocatalytic activity. The efficacy of CNT@COF-H was demonstrated through its strong sterilization capability and clear dye degradation, offering a promising method for efficient and eco-friendly production of H2O2.

Electronic Supplementary Material

Download File(s)
7024_ESM.pdf (2.3 MB)

References

[1]

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

[2]

Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; de León, C. P.; Walsh, F. C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442–458.

[3]

Li, X. G.; Tang, S. S.; Dou, S.; Fan, H. J.; Choksi, T. S.; Wang, X. Molecule confined isolated metal sites enable the electrocatalytic synthesis of hydrogen peroxide. Adv. Mater. 2022, 34, 2104891.

[4]

Bu, Y. F.; Wang, Y. B.; Han, G. F.; Zhao, Y. X.; Ge, X. L.; Li, F.; Zhang, Z. H.; Zhong, Q.; Baek, J. B. Carbon-based electrocatalysts for efficient hydrogen peroxide production. Adv. Mater. 2021, 33, 2103266.

[5]

Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

[6]

Sun, Y. Y.; Han, L.; Strasser, P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 2020, 49, 6605–6631.

[7]

Xue, Y. D.; Wang, Y. T.; Pan, Z. H.; Sayama, K. Electrochemical and photoelectrochemical water oxidation for hydrogen peroxide production. Angew. Chem., Int. Ed. 2021, 60, 10469–10480.

[8]

Freese, T.; Meijer, J. T.; Feringa, B. L.; Beil, S. B. An organic perspective on photocatalytic production of hydrogen peroxide. Nat. Catal. 2023, 6, 553–558.

[9]

Li, M.; Zhang, S. B. Coupling waste plastic upgrading and CO2 photoreduction to high-value chemicals by a binuclear Re–Ru heterogeneous catalyst. ACS Catal. 2024, 14, 6717–6727.

[10]

Li, M.; Zhang, S. B. Tandem chemical depolymerization and photoreforming of waste PET plastic to high-value-added chemicals. ACS Catal. 2024, 14, 2949–2958.

[11]

Huang, N. Y.; Zheng, Y. T.; Chen, D.; Chen, Z. Y.; Huang, C. Z.; Xu, Q. Reticular framework materials for photocatalytic organic reactions. Chem. Soc. Rev. 2023, 52, 7949–8004.

[12]

Guo, Y.; Tong, X. L.; Yang, N. J. Photocatalytic and electrocatalytic generation of hydrogen peroxide: Principles, catalyst design and performance. Nano-Micro Lett. 2023, 15, 77.

[13]

Li, H. X.; Li, R. J.; Liu, G.; Zhai, M. L.; Yu, J. G. Noble-metal-free single- and dual-atom catalysts for artificial photosynthesis. Adv. Mater. 2024, 36, 2301307.

[14]

Kondo, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Design of metal-organic framework catalysts for photocatalytic hydrogen peroxide production. Chem 2022, 8, 2924–2938.

[15]

Yu, X. H.; Hu, Y. P.; Shao, C. C.; Huang, W.; Li, Y. G. Polymer semiconductors: A unique platform for photocatalytic hydrogen peroxide production. Mater. Today 2023, 71, 152–173.

[16]

Wang, H.; Wang, H.; Wang, Z. W.; Tang, L.; Zeng, G. M.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C. Y.; Li, X. Y. et al. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165.

[17]

Liu, R. Y.; Chen, Y. Z.; Yu, H. D.; Položij, M.; Guo, Y. Y.; Sum, T. C.; Heine, T.; Jiang, D. L. Linkage-engineered donor-acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 2024, 7, 195–206.

[18]

Yong, Z. J.; Ma, T. Y. Solar-to-H2O2 catalyzed by covalent organic frameworks. Angew. Chem., Int. Ed. 2023, 62, e202308980.

[19]

Liang, A. J.; Li, W. B.; Li, A. B.; Peng, H.; Ma, G. F.; Zhu, L.; Lei, Z. Q.; Xu, Y. X. Covalent triazine frameworks materials for photo- and electro-catalysis. Nano Res. 2024, 17, 7830–7839.

[20]

Liu, R. Y.; Tan, K. T.; Gong, Y. F.; Chen, Y. Z.; Li, Z. E.; Xie, S. L.; He, T.; Lu, Z.; Yang, H.; Jiang, D. L. Covalent organic frameworks: An ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 2021, 50, 120–242.

[21]

Ren, X. T.; Sun, J. J.; Li, Y. S.; Bai, F. Primitive functional groups directed distinct photocatalytic performance of imine-linked donor-acceptor covalent organic frameworks. Nano Res. 2024, 17, 4994–5001.

[22]

Liu, Y.; Shi, Y. W.; Wang, H.; Zhang, S. B. Donor-acceptor covalent organic frameworks-confined ultrafine bimetallic Pt-based nanoclusters for enhanced photocatalytic H2 generation. Nano Res. 2024, 17, 5835–5844.

[23]

Liu, Y. K.; Liu, X. A.; Su, A.; Gong, C. T.; Chen, S. W.; Xia, L. W.; Zhang, C. W.; Tao, X. H.; Li, Y.; Li, Y. H. et al. Revolutionizing the structural design and determination of covalent-organic frameworks: Principles, methods, and techniques. Chem. Soc. Rev. 2024, 53, 502–544.

[24]

Liao, Y. X.; Guo, L. C.; Gong, L. L.; Zhang, Q. Y.; Zhao, D.; Jia, Y. Z.; Hua, R.; Luo, F. Regulating benzene ring number as connector in covalent organic framework for boosting photosynthesis of H2O2 from seawater. Nano Lett. 2024, 24, 3819–3825.

[25]

Feng, C. Y.; Wu, Z. P.; Huang, K. W.; Ye, J. H.; Zhang, H. B. Surface modification of 2D photocatalysts for solar energy conversion. Adv. Mater. 2022, 34, 2200180.

[26]

Yang, L. J.; Chen, Z. X.; Cao, Q.; Liao, H. R.; Gao, J.; Zhang, L.; Wei, W. Y.; Li, H.; Lu, J. M. Structural regulation of photocatalyst to optimize hydroxyl radical production pathways for highly efficient photocatalytic oxidation. Adv. Mater. 2024, 36, 2306758.

[27]

Qian, Y. Y.; Han, Y. L.; Zhang, X. Y.; Yang, G.; Zhang, G. Z.; Jiang, H. L. Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis. Nat. Commun. 2023, 14, 3083.

[28]

Shi, T.; Wang, H.; Li, L.; Zhao, Z.; Wang, C. M.; Zhang, X. D.; Xie, Y. Enhanced photostability in protonated covalent organic frameworks for singlet oxygen generation. Matter 2022, 5, 1004–1015.

[29]

Zhu, Q.; Shi, L.; Li, Z.; Li, G. S.; Xu, X. X. Protonation of an imine-linked covalent organic framework for efficient H2O2 photosynthesis under visible light up to 700 nm. Angew. Chem., Int. Ed. 2024, 63, e202408041.

[30]

Guerrini, M.; Delgado Aznar, E.; Cocchi, C. Electronic and optical properties of protonated triazine derivatives. J. Phys. Chem. C 2020, 124, 27801–27810.

[31]

Yang, J.; Acharjya, A.; Ye, M. Y.; Rabeah, J.; Li, S.; Kochovski, Z.; Youk, S.; Roeser, J.; Grüneberg, J.; Penschke, C. et al. Protonated imine-linked covalent organic frameworks for photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19797–19803.

[32]

Yang, H.; He, D. Y.; Zhang, T. T.; Liu, C. H.; Cheng, F. Y.; Zhou, Y. J.; Zhang, Y. N.; Qu, J. Magnetic carbon nanotubes/red phosphorus/graphitic carbon nitride heterojunction for highly efficient visible-light photocatalytic water disinfection. Chem. Eng. J. 2023, 466, 143309.

[33]

Lin, L. H.; Ma, Y. W.; Zettsu, N.; Vequizo, J. J. M.; Gu, C.; Yamakata, A.; Hisatomi, T.; Takata, T.; Domen, K. Carbon nanotubes as a solid-state electron mediator for visible-light-driven Z-scheme overall water splitting. J. Am. Chem. Soc. 2024, 146, 14829–14834.

[34]

He, F. T.; Lu, Y. M.; Wu, Y. Z.; Wang, S. L.; Zhang, Y.; Dong, P.; Wang, Y. Q.; Zhao, C. C.; Wang, S. J.; Zhang, J. Q. et al. Rejoint of carbon nitride fragments into multi-interfacial order-disorder homojunction for robust photo-driven generation of H2O2. Adv. Mater. 2024, 36, 2307490.

[35]

Kulkarni, R.; Noda, Y.; Kumar Barange, D.; Kochergin, Y. S.; Lyu, P.; Balcarova, B.; Nachtigall, P.; Bojdys, M. J. Real-time optical and electronic sensing with a β-amino enone linked, triazine-containing 2D covalent organic framework. Nat. Commun. 2019, 10, 3228.

[36]

Ning, R.; Kim, S.; Sun, E.; Jiang, Y.; Baek, J.; Li, Y. Z.; Robinson, A.; Vallez, L.; Zheng, X. L. Enhanced H2O2 upcycling into hydroxyl radicals with GO/Ni: FeOOH-coated silicon nanowire photocatalysts for wastewater treatment. Nano Lett. 2023, 23, 6323–6329.

[37]

Zhao, Y. L.; Xu, X. H.; Zhang, K. N.; Li, Z. Y.; Wang, H. Y.; Zhao, Y.; Qiu, J. K.; Wang, J. J. Designing local electron delocalization in 2D covalent organic frameworks for enhanced sunlight-driven photocatalytic activity. ACS Catal. 2024, 14, 3556–3564.

[38]

Ren, X. T.; Wen, M. Y.; Hou, X. B.; Sun, J. J.; Bai, F.; Li, Y. S. Covalent organic framework isomers with divergent photocatalytic properties. Chem. Commun. 2024, 60, 4423–4426.

Nano Research
Article number: 94907024
Cite this article:
Yang L, Lv W, Wang Y, et al. Carbon nanotube incorporation and framework protonation-regulated energy band for enhanced photocatalytic hydrogen peroxide production of COF. Nano Research, 2025, 18(1): 94907024. https://doi.org/10.26599/NR.2025.94907024
Topics:

482

Views

107

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 July 2024
Revised: 26 August 2024
Accepted: 04 September 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return