Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Developing non-noble catalyst synthesis under green conditions with efficient electrochemical reactions is a challenging task in green energy technologies. To meet this challenge, the synthesis of hybridized non-noble cobalt and iron in the zeolitic-imidazole framework (Co/Fe-ZIF) through a solid-state thermal (SST) method is developed. In the obtained Co/Fe-ZIF structure, iron atoms are uniformly dispersed and randomly hybridized with primary cobalt atoms and imidazole linker, similar to the structure of ZIF-67. The hybridized Co/Fe-ZIF shows potential as an electrocatalyst for oxidation evolution reaction (OER). The optimal iron-incorporating catalyst, Co/Fe0.2-ZIF, demonstrates remarkable performance with a minimized overpotential of 285 mV at the current density (j) of 10 mA·cm−2 in 1 M KOH. The synergistic effect of iron and cobalt ions on the catalyst provides active sites that bind to intermediate (OOH*) more strongly and facilitate high electron charge transfer, enhancing efficient electrocatalyst. Furthermore, the synergistic Co/Fe0.2-ZIF catalyst demonstrates excellent durable reaction time compared to non-iron catalyst (ZIF-67) and conventional catalyst (RuO2).
Chai, G. L.; Qiu, K. P.; Qiao, M.; Titirici, M. M.; Shang, C. X.; Guo, Z. X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks. Energy Environ. Sci. 2017, 10, 1186–1195.
Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.
Chen, P. Z.; Hu, X. L. High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts. Adv. Energy Mater. 2020, 10, 2002285.
Du, L.; Luo, L. L.; Feng, Z. X.; Engelhard, M.; Xie, X. H.; Han, B. H.; Sun, J. M.; Zhang, J. H.; Yin, G. P.; Wang, C. M. et al. Nitrogen-doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst. Nano Energy 2017, 39, 245–252.
Li, X. Z.; Fang, Y. Y.; Lin, X. Q.; Tian, M.; An, X. C.; Fu, Y.; Li, R.; Jin, J.; Ma, J. T. MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: Extraordinary bi-functional electrocatalysts for OER and ORR. J. Mater. Chem. A 2015, 3, 17392–17402.
Lai, C. G.; Liu, X. B.; Cao, C. Q.; Wang, Y.; Yin, Y. H.; Liang, T. X.; Dionysiou, D. D. Structural regulation of N-doped carbon nanocages as high-performance bifunctional electrocatalysts for rechargeable Zn-air batteries. Carbon 2021, 173, 715–723.
Park, Y. S.; Park, Y.; Jang, M. J.; Lee, J.; Kim, C.; Park, M. G.; Yang, J. C.; Choi, J.; Lee, H. M.; Choi, S. M. Effect of intrinsic and extrinsic activity of electrocatalysts on anion exchange membrane water electrolyzer. Chem. Eng. J. 2023, 472, 145150.
Wu, L. H.; Guan, Z. X.; Guo, D. Y.; Yang, L.; Chen, X.; Wang, S. High-efficiency oxygen evolution reaction: Controllable reconstruction of surface interface. Small 2023, 19, 2304007.
Chen, B. Y.; Biancolli, A. L. G.; Radford, C. L.; Holdcroft, S. Stainless steel felt as a combined OER electrocatalyst/porous transport layer for investigating anion-exchange membranes in water electrolysis. ACS Energy Lett. 2023, 8, 2661–2667.
Ham, K.; Hong, S.; Kang, S.; Cho, K.; Lee, J. Extensive active-site formation in trirutile CoSb2O6 by oxygen vacancy for oxygen evolution reaction in anion exchange membrane water splitting. ACS Energy Lett. 2021, 6, 364–370.
Pi, Y. C.; Qiu, Z. M.; Sun, Y. Y.; Ishii, H.; Liao, Y. F.; Zhang, X. Y.; Chen, H. Y.; Pang, H. Synergistic mechanism of sub-nanometric Ru clusters anchored on tungsten oxide nanowires for high-efficient bifunctional hydrogen electrocatalysis. Adv. Sci. 2023, 10, 2206096.
Saad, A.; Liu, D. Q.; Wu, Y. C.; Song, Z. Q.; Li, Y.; Najam, T.; Zong, K.; Tsiakaras, P.; Cai, X. K. Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Appl. Catal. B: Environ. 2021, 298, 120529.
Nandi, S.; Singh, S. K.; Mullangi, D.; Illathvalappil, R.; George, L.; Vinod, C. P.; Kurungot, S.; Vaidhyanathan, R. Low band gap benzimidazole COF supported Ni3N as highly active OER catalyst. Adv. Energy Mater. 2016, 6, 1601189.
Li, X. R.; Li, Y. P.; Wang, C. L. A 3D hierarchical electrocatalyst: Core–shell Cu@Cu(OH)2 nanorods/MOF octahedra supported on N-doped carbon for oxygen evolution reaction. Nano Res. 2023, 16, 8012–8017.
Mo, F.; Zhou, Q. X.; Wang, Q.; Hou, Z. L.; Wang, J. L. The applications of MOFs related materials in photo/electrochemical decontamination: An updated review. Chem. Eng. J. 2022, 450, 138326.
Qian, Y. T.; Zhang, F. F.; Pang, H. A review of MOFs and their composites-based photocatalysts: Synthesis and applications. Adv. Funct. Mater. 2021, 31, 2104231.
Wang, K. C.; Li, Y. P.; Xie, L. H.; Li, X. Y.; Li, J. R. Construction and application of base-stable MOFs: A critical review. Chem. Soc. Rev. 2022, 51, 6417–6441.
Huang, Y.; Chen, Y. C.; Xu, M. J.; Ly, A.; Gili, A.; Murphy, E.; Asset, T.; Liu, Y. C.; De Andrade, V.; Segre, C. U. et al. Catalysts by pyrolysis: Transforming metal-organic frameworks (MOFs) precursors into metal-nitrogen-carbon (M-N-C) materials. Mater. Today 2023, 69, 66–78.
Liu, J. L.; Zhu, D. D.; Guo, C. X.; Vasileff, A.; Qiao, S. Z. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv. Energy Mater. 2017, 7, 1700518.
Wei, Y.; Zheng, M. B.; Zhu, W.; Zhang, Y.; Hu, W. H.; Pang, H. Preparation of hierarchical hollow CoFe Prussian blue analogues and its heat-treatment derivatives for the electrocatalyst of oxygen evolution reaction. J. Colloid Interface Sci. 2023, 631, 8–16.
Suryanto, B. H. R.; Wang, Y.; Hocking, R. K.; Adamson, W.; Zhao, C. Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nat. Commun. 2019, 10, 5599.
Shahzad, A.; Zulfiqar, F.; Nadeem, M. A. Cobalt containing bimetallic ZIFs and their derivatives as OER electrocatalysts: A critical review. Coord. Chem. Rev. 2023, 477, 214925.
Zhang, Y.; Lu, J. D.; Zhang, G. X.; Zhu, R. M.; Pang, H. Ternary alloy and metal oxides embedded in yolk–shell polyhedrons as bifunctional oxygen electrocatalyst. Rare Met. 2024, 43, 478–488.
Dymerska, A.; Środa, B.; Sielicki, K.; Leniec, G.; Zielińska, B.; Zairov, R.; Nazmutdinov, R.; Mijowska, E. Robust and highly efficient electrocatalyst based on ZIF-67 and Ni2+ dimers for oxygen evolution reaction: In situ mechanistic insight. J. Energy Chem. 2023, 86, 263–276.
Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. Corrigendum: FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 14795–14795.
Feng, W. H.; Liu, C. L.; Zhang, G. X.; Yang, H.; Su, Y. C.; Sun, Y. Y.; Pang, H. Tuning the local coordination environment of single-atom catalysts for enhanced electrocatalytic activity. EnergyChem 2024, 6, 100119.
Lee, S.; Moysiadou, A.; Chu, Y. C. Tracking high-valent surface iron species in the oxygen evolution reaction on cobalt iron (oxy)hydroxides. Energy Environ. Sci. 2022, 15, 206–214.
Wen, D.; Ma, Y.; Mu, G. M.; Huang, Q. P.; Luo, X. F.; Lin, D. M.; Xu, C. G.; Xie, F. Y.; Wang, G. Z.; Guo, W. H. Constructing MIL-53(Fe)@ZIF-67(Co) binary metal-organic framework hierarchical heterostructure electrodes for efficient oxygen evolution. Dalton Trans. 2023, 52, 10662–10671.
Han, D. Y.; Hao, L.; Wang, R.; Gao, Y. J.; Su, M.; Zhang, Y. F. Design yolk–shelled FeCo layered double hydroxide via a “one-stone-two-birds” strategy for oxygen evolution reaction. Sep. Purif. Technol. 2024, 336, 126363.
Pan, Y. D.; Zhang, J. S.; Zhao, Z. L.; Shi, L.; Wu, B. K.; Zeng, L. Iron-doped metal-organic framework with enhanced oxygen evolution reaction activity for overall water splitting. Int. J. Hydrogen Energy 2021, 46, 34565–34573.
Shi, G. Y.; Xu, W.; Wang, J. C.; Klomkliang, N.; Mousavi, B.; Chaemchuen, S. Thermochemical transformation in the single-step synthesis of zeolitic imidazole frameworks under solvent-free conditions. Dalton Trans. 2020, 49, 2811–2818.
Wang, J. C.; Chaemchuen, S.; Klomkliang, N.; Verpoort, F. In situ thermal solvent-free synthesis of zeolitic imidazolate frameworks with high crystallinity and porosity for effective adsorption and catalytic applications. Cryst. Growth Des. 2021, 21, 5349–5359.
Zheng, Z. H.; Wang, J. C.; Liu, M.; Mousavi, B.; Liu, N.; Chaemchuen, S. Facile and green synthesis cobalt embedded in N-doped porous carbon under zeo-waste conditions as an efficient oxygen evolution reduction catalyst. Microporous Mesoporous Mater. 2022, 337, 111916.
Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013.
Tao, L.; Lin, C. Y.; Dou, S.; Feng, S.; Chen, D. W.; Liu, D. D.; Huo, J.; Xia, Z. H.; Wang, S. Y. Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers. Nano Energy 2017, 41, 417–425.
Tang, Y.; Zou, Z. J.; Wu, X. G.; Zuo, P. F.; Wang, L.; Huang, G. W.; Zhu, J.; Zhong, S. L. ZIF-67@POM hybrid-derived unique willow-shaped two-dimensional Mo-CoP nanostructures as efficient electrocatalysts for the oxygen evolution reaction. New J. Chem. 2023, 47, 9887–9893.
Li, S. S.; Gao, Y. Q.; Li, N.; Ge, L.; Bu, X. H.; Feng, P. Y. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ. Sci. 2021, 14, 1897–1927.
Gu, X. C.; Wu, C. G.; Wang, S. L.; Feng, L. G. Cobalt fluoride/nitrogen-doped carbon derived from ZIF-67 for oxygen evolution reaction. Catal. Commun. 2022, 162, 106394.
Jung, S.; Senthil, R. A.; Moon, C. J.; Tarasenka, N.; Min, A.; Lee, S. J.; Tarasenko, N.; Choi, M. Y. Mechanistic insights into ZIF-67-derived Ir-doped Co3O4@N-doped carbon hybrids as efficient electrocatalysts for overall water splitting using in situ Raman spectroscopy. Chem. Eng. J. 2023, 468, 143717.
Zhu, R. M.; Ding, J. W.; Xu, Y. X.; Yang, J. P.; Xu, Q.; Pang, H. π-Conjugated molecule boosts metal-organic frameworks as efficient oxygen evolution reaction catalysts. Small 2018, 14, 1803576.
Guo, X. Z.; Liang, G. Z.; Gu, A. J. Designed formation of CoS2 nanoboxes with enhanced oxygen evolution reaction electrocatalytic properties. Int. J. Hydrogen Energy 2019, 44, 31020–31028.
Zha, Q. Q.; Xu, W. Y.; Li, X. L.; Ni, Y. H. Chlorine-doped α-Co(OH)2 hollow nano-dodecahedrons prepared by a ZIF-67 self-sacrificing template route and enhanced OER catalytic activity. Dalton Trans. 2019, 48, 12127–12136.
Jia, H. X.; Zhang, M. Z.; Meng, T. J.; An, S. Y.; Wang, H.; Yang, X. J.; Zhang, Y. F. Facile synthesis of Fe, Co bimetal embedded nanoporous carbon polyhedron composites for an efficient oxygen evolution reaction. J. Colloid Interface Sci. 2020, 563, 189–196.
Lashgari, S. M.; Yari, H.; Mahdavian, M.; Ramezanzadeh, B.; Bahlakeh, G.; Ramezanzadeh, M. Synthesis of graphene oxide nanosheets decorated by nanoporous zeolite-imidazole (ZIF-67) based metal-organic framework with controlled-release corrosion inhibitor performance: Experimental and detailed DFT-D theoretical explorations. J. Hazard. Mater. 2021, 404, 124068.
Li, H. X.; Yao, Y. Z.; Zhang, J.; Du, J.; Xu, S. D.; Wang, C. H.; Zhang, D.; Tang, J. H.; Zhao, H. T.; Zhou, J. Degradation of phenanthrene by peroxymonosulfate activated with bimetallic metal-organic frameworks: Kinetics, mechanisms, and degradation products. Chem. Eng. J. 2020, 397, 125401.
Li, J. X.; Fan, L. L.; Hua, Q. F.; Geng, Q. H.; Zhang, Y. Y.; Fan, X. L.; Ma, L.; Wang, C. M.; Zhu, W.; Feng, X. et al. Ordered macroporous carbonous skeletons implanted with dual-phase Co/CoFe nanoparticles for boosting electrocatalytic performance. Chem. Eng. J. 2023, 470, 144399.
Zhang, H.; Zhong, J.; Zhou, G. X.; Wu, J. L.; Yang, Z. Y.; Shi, X. M. Microwave-assisted solvent-free synthesis of Zeolitic Imidazolate framework-67. J. Nanomater. 2016, 2016, 9648386.
Zhou, Q. Y.; Zhang, Z.; Cai, J. J.; Liu, B.; Zhang, Y. L.; Gong, X. F.; Sui, X.; Yu, A. P.; Zhao, L.; Wang, Z. B. et al. Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy 2020, 71, 104592.
Qian, Q. Z.; Li, Y. P.; Liu, Y.; Yu, L.; Zhang, G. Q. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 2019, 31, 1901139.
Li, J. T. Oxygen evolution reaction in energy conversion and storage: Design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 2022, 14, 112.
Ge, K.; Sun, S. J.; Zhao, Y.; Yang, K.; Wang, S.; Zhang, Z. H.; Cao, J. Y.; Yang, Y. F.; Zhang, Y.; Pan, M. W. et al. Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 12097–12102.
Hou, X. B.; Han, Z. K.; Xu, X. J.; Sarker, D.; Zhou, J.; Wu, M.; Liu, Z. C.; Huang, M. H.; Jiang, H. Q. Controllable amorphization engineering on bimetallic metal-organic frameworks for ultrafast oxygen evolution reaction. Chem. Eng. J. 2021, 418, 129330.
Chen, C. L.; Sun, M. Z.; Zhang, F.; Li, H. J.; Sun, M. R.; Fang, P.; Song, T. L.; Chen, W. X.; Dong, J. C.; Rosen, B. et al. Adjacent Fe site boosts electrocatalytic oxygen evolution at Co site in single-atom-catalyst through a dual-metal-site design. Energy Environ. Sci. 2023, 16, 1685–1696.
Li, P.; Qiang, F. Q.; Tan, X. H.; Li, Z.; Shi, J.; Liu, S.; Huang, M. H.; Chen, J. W.; Tian, W. Q.; Wu, J. Y. et al. Electronic modulation induced by decorating single-atomic Fe-Co pairs with Fe-Co alloy clusters toward enhanced ORR/OER activity. Appl. Catal. B: Environ. 2024, 340, 123231.
Tang, T. M.; Han, J. Y.; Wang, Z. L.; Niu, X. D.; Guan, J. Q. Diatomic Fe-Co catalysts synergistically catalyze oxygen evolution reaction. Nano Res. 2024, 17, 3794–3800.
Chen, J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhou, Y.; Wang, Z. Y.; Li, Y. Y.; Xu, B. B.; Li, J. T.; Sun, S. G. Interfacial Interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351.
626
Views
248
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).