AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Facile synthesis of hybridized Co/Fe-ZIF under solvent-free conditions for efficient oxidation evolution reaction electrocatalysis

YinSheng Xu3,4Zihan Li1,4Zhonghan Cheng1,4Somboon Chaemchuen1,2 ( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Show Author Information

Graphical Abstract

A hybridized non-noble cobalt and iron in the zeolitic-imidazole framework (Co/Fe-ZIF) is synthesized using a solid-state thermal (SST) method and utilized as an efficient catalyst for the oxygen evolution reaction.

Abstract

Developing non-noble catalyst synthesis under green conditions with efficient electrochemical reactions is a challenging task in green energy technologies. To meet this challenge, the synthesis of hybridized non-noble cobalt and iron in the zeolitic-imidazole framework (Co/Fe-ZIF) through a solid-state thermal (SST) method is developed. In the obtained Co/Fe-ZIF structure, iron atoms are uniformly dispersed and randomly hybridized with primary cobalt atoms and imidazole linker, similar to the structure of ZIF-67. The hybridized Co/Fe-ZIF shows potential as an electrocatalyst for oxidation evolution reaction (OER). The optimal iron-incorporating catalyst, Co/Fe0.2-ZIF, demonstrates remarkable performance with a minimized overpotential of 285 mV at the current density (j) of 10 mA·cm−2 in 1 M KOH. The synergistic effect of iron and cobalt ions on the catalyst provides active sites that bind to intermediate (OOH*) more strongly and facilitate high electron charge transfer, enhancing efficient electrocatalyst. Furthermore, the synergistic Co/Fe0.2-ZIF catalyst demonstrates excellent durable reaction time compared to non-iron catalyst (ZIF-67) and conventional catalyst (RuO2).

Electronic Supplementary Material

Download File(s)
7022_ESM.pdf (1.2 MB)

References

[1]

Chai, G. L.; Qiu, K. P.; Qiao, M.; Titirici, M. M.; Shang, C. X.; Guo, Z. X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks. Energy Environ. Sci. 2017, 10, 1186–1195.

[2]

Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.

[3]

Chen, P. Z.; Hu, X. L. High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts. Adv. Energy Mater. 2020, 10, 2002285.

[4]

Du, L.; Luo, L. L.; Feng, Z. X.; Engelhard, M.; Xie, X. H.; Han, B. H.; Sun, J. M.; Zhang, J. H.; Yin, G. P.; Wang, C. M. et al. Nitrogen-doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst. Nano Energy 2017, 39, 245–252.

[5]

Li, X. Z.; Fang, Y. Y.; Lin, X. Q.; Tian, M.; An, X. C.; Fu, Y.; Li, R.; Jin, J.; Ma, J. T. MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: Extraordinary bi-functional electrocatalysts for OER and ORR. J. Mater. Chem. A 2015, 3, 17392–17402.

[6]

Lai, C. G.; Liu, X. B.; Cao, C. Q.; Wang, Y.; Yin, Y. H.; Liang, T. X.; Dionysiou, D. D. Structural regulation of N-doped carbon nanocages as high-performance bifunctional electrocatalysts for rechargeable Zn-air batteries. Carbon 2021, 173, 715–723.

[7]

Park, Y. S.; Park, Y.; Jang, M. J.; Lee, J.; Kim, C.; Park, M. G.; Yang, J. C.; Choi, J.; Lee, H. M.; Choi, S. M. Effect of intrinsic and extrinsic activity of electrocatalysts on anion exchange membrane water electrolyzer. Chem. Eng. J. 2023, 472, 145150.

[8]

Wu, L. H.; Guan, Z. X.; Guo, D. Y.; Yang, L.; Chen, X.; Wang, S. High-efficiency oxygen evolution reaction: Controllable reconstruction of surface interface. Small 2023, 19, 2304007.

[9]

Chen, B. Y.; Biancolli, A. L. G.; Radford, C. L.; Holdcroft, S. Stainless steel felt as a combined OER electrocatalyst/porous transport layer for investigating anion-exchange membranes in water electrolysis. ACS Energy Lett. 2023, 8, 2661–2667.

[10]

Ham, K.; Hong, S.; Kang, S.; Cho, K.; Lee, J. Extensive active-site formation in trirutile CoSb2O6 by oxygen vacancy for oxygen evolution reaction in anion exchange membrane water splitting. ACS Energy Lett. 2021, 6, 364–370.

[11]

Pi, Y. C.; Qiu, Z. M.; Sun, Y. Y.; Ishii, H.; Liao, Y. F.; Zhang, X. Y.; Chen, H. Y.; Pang, H. Synergistic mechanism of sub-nanometric Ru clusters anchored on tungsten oxide nanowires for high-efficient bifunctional hydrogen electrocatalysis. Adv. Sci. 2023, 10, 2206096.

[12]

Saad, A.; Liu, D. Q.; Wu, Y. C.; Song, Z. Q.; Li, Y.; Najam, T.; Zong, K.; Tsiakaras, P.; Cai, X. K. Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Appl. Catal. B: Environ. 2021, 298, 120529.

[13]

Nandi, S.; Singh, S. K.; Mullangi, D.; Illathvalappil, R.; George, L.; Vinod, C. P.; Kurungot, S.; Vaidhyanathan, R. Low band gap benzimidazole COF supported Ni3N as highly active OER catalyst. Adv. Energy Mater. 2016, 6, 1601189.

[14]

Li, X. R.; Li, Y. P.; Wang, C. L. A 3D hierarchical electrocatalyst: Core–shell Cu@Cu(OH)2 nanorods/MOF octahedra supported on N-doped carbon for oxygen evolution reaction. Nano Res. 2023, 16, 8012–8017.

[15]

Mo, F.; Zhou, Q. X.; Wang, Q.; Hou, Z. L.; Wang, J. L. The applications of MOFs related materials in photo/electrochemical decontamination: An updated review. Chem. Eng. J. 2022, 450, 138326.

[16]

Qian, Y. T.; Zhang, F. F.; Pang, H. A review of MOFs and their composites-based photocatalysts: Synthesis and applications. Adv. Funct. Mater. 2021, 31, 2104231.

[17]

Wang, K. C.; Li, Y. P.; Xie, L. H.; Li, X. Y.; Li, J. R. Construction and application of base-stable MOFs: A critical review. Chem. Soc. Rev. 2022, 51, 6417–6441.

[18]

Huang, Y.; Chen, Y. C.; Xu, M. J.; Ly, A.; Gili, A.; Murphy, E.; Asset, T.; Liu, Y. C.; De Andrade, V.; Segre, C. U. et al. Catalysts by pyrolysis: Transforming metal-organic frameworks (MOFs) precursors into metal-nitrogen-carbon (M-N-C) materials. Mater. Today 2023, 69, 66–78.

[19]

Liu, J. L.; Zhu, D. D.; Guo, C. X.; Vasileff, A.; Qiao, S. Z. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv. Energy Mater. 2017, 7, 1700518.

[20]
Chaemchuen, S.; Kou, Z. K. Chapter 9—Recent development in metal-organic frameworks and their derivatives for electrocatalysis and fuel cells. In Metal Organic Frameworks and Their Derivatives for Energy Conversion and Storage. Guan, C., Ed.; Elsevier: Amsterdam, 2024; pp 187–220.
[21]

Wei, Y.; Zheng, M. B.; Zhu, W.; Zhang, Y.; Hu, W. H.; Pang, H. Preparation of hierarchical hollow CoFe Prussian blue analogues and its heat-treatment derivatives for the electrocatalyst of oxygen evolution reaction. J. Colloid Interface Sci. 2023, 631, 8–16.

[22]

Suryanto, B. H. R.; Wang, Y.; Hocking, R. K.; Adamson, W.; Zhao, C. Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nat. Commun. 2019, 10, 5599.

[23]

Shahzad, A.; Zulfiqar, F.; Nadeem, M. A. Cobalt containing bimetallic ZIFs and their derivatives as OER electrocatalysts: A critical review. Coord. Chem. Rev. 2023, 477, 214925.

[24]

Zhang, Y.; Lu, J. D.; Zhang, G. X.; Zhu, R. M.; Pang, H. Ternary alloy and metal oxides embedded in yolk–shell polyhedrons as bifunctional oxygen electrocatalyst. Rare Met. 2024, 43, 478–488.

[25]

Dymerska, A.; Środa, B.; Sielicki, K.; Leniec, G.; Zielińska, B.; Zairov, R.; Nazmutdinov, R.; Mijowska, E. Robust and highly efficient electrocatalyst based on ZIF-67 and Ni2+ dimers for oxygen evolution reaction: In situ mechanistic insight. J. Energy Chem. 2023, 86, 263–276.

[26]

Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. Corrigendum: FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 14795–14795.

[27]

Feng, W. H.; Liu, C. L.; Zhang, G. X.; Yang, H.; Su, Y. C.; Sun, Y. Y.; Pang, H. Tuning the local coordination environment of single-atom catalysts for enhanced electrocatalytic activity. EnergyChem 2024, 6, 100119.

[28]

Lee, S.; Moysiadou, A.; Chu, Y. C. Tracking high-valent surface iron species in the oxygen evolution reaction on cobalt iron (oxy)hydroxides. Energy Environ. Sci. 2022, 15, 206–214.

[29]

Wen, D.; Ma, Y.; Mu, G. M.; Huang, Q. P.; Luo, X. F.; Lin, D. M.; Xu, C. G.; Xie, F. Y.; Wang, G. Z.; Guo, W. H. Constructing MIL-53(Fe)@ZIF-67(Co) binary metal-organic framework hierarchical heterostructure electrodes for efficient oxygen evolution. Dalton Trans. 2023, 52, 10662–10671.

[30]

Han, D. Y.; Hao, L.; Wang, R.; Gao, Y. J.; Su, M.; Zhang, Y. F. Design yolk–shelled FeCo layered double hydroxide via a “one-stone-two-birds” strategy for oxygen evolution reaction. Sep. Purif. Technol. 2024, 336, 126363.

[31]

Pan, Y. D.; Zhang, J. S.; Zhao, Z. L.; Shi, L.; Wu, B. K.; Zeng, L. Iron-doped metal-organic framework with enhanced oxygen evolution reaction activity for overall water splitting. Int. J. Hydrogen Energy 2021, 46, 34565–34573.

[32]

Shi, G. Y.; Xu, W.; Wang, J. C.; Klomkliang, N.; Mousavi, B.; Chaemchuen, S. Thermochemical transformation in the single-step synthesis of zeolitic imidazole frameworks under solvent-free conditions. Dalton Trans. 2020, 49, 2811–2818.

[33]

Wang, J. C.; Chaemchuen, S.; Klomkliang, N.; Verpoort, F. In situ thermal solvent-free synthesis of zeolitic imidazolate frameworks with high crystallinity and porosity for effective adsorption and catalytic applications. Cryst. Growth Des. 2021, 21, 5349–5359.

[34]

Zheng, Z. H.; Wang, J. C.; Liu, M.; Mousavi, B.; Liu, N.; Chaemchuen, S. Facile and green synthesis cobalt embedded in N-doped porous carbon under zeo-waste conditions as an efficient oxygen evolution reduction catalyst. Microporous Mesoporous Mater. 2022, 337, 111916.

[35]

Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013.

[36]

Tao, L.; Lin, C. Y.; Dou, S.; Feng, S.; Chen, D. W.; Liu, D. D.; Huo, J.; Xia, Z. H.; Wang, S. Y. Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers. Nano Energy 2017, 41, 417–425.

[37]

Tang, Y.; Zou, Z. J.; Wu, X. G.; Zuo, P. F.; Wang, L.; Huang, G. W.; Zhu, J.; Zhong, S. L. ZIF-67@POM hybrid-derived unique willow-shaped two-dimensional Mo-CoP nanostructures as efficient electrocatalysts for the oxygen evolution reaction. New J. Chem. 2023, 47, 9887–9893.

[38]

Li, S. S.; Gao, Y. Q.; Li, N.; Ge, L.; Bu, X. H.; Feng, P. Y. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ. Sci. 2021, 14, 1897–1927.

[39]

Gu, X. C.; Wu, C. G.; Wang, S. L.; Feng, L. G. Cobalt fluoride/nitrogen-doped carbon derived from ZIF-67 for oxygen evolution reaction. Catal. Commun. 2022, 162, 106394.

[40]

Jung, S.; Senthil, R. A.; Moon, C. J.; Tarasenka, N.; Min, A.; Lee, S. J.; Tarasenko, N.; Choi, M. Y. Mechanistic insights into ZIF-67-derived Ir-doped Co3O4@N-doped carbon hybrids as efficient electrocatalysts for overall water splitting using in situ Raman spectroscopy. Chem. Eng. J. 2023, 468, 143717.

[41]

Zhu, R. M.; Ding, J. W.; Xu, Y. X.; Yang, J. P.; Xu, Q.; Pang, H. π-Conjugated molecule boosts metal-organic frameworks as efficient oxygen evolution reaction catalysts. Small 2018, 14, 1803576.

[42]

Guo, X. Z.; Liang, G. Z.; Gu, A. J. Designed formation of CoS2 nanoboxes with enhanced oxygen evolution reaction electrocatalytic properties. Int. J. Hydrogen Energy 2019, 44, 31020–31028.

[43]

Zha, Q. Q.; Xu, W. Y.; Li, X. L.; Ni, Y. H. Chlorine-doped α-Co(OH)2 hollow nano-dodecahedrons prepared by a ZIF-67 self-sacrificing template route and enhanced OER catalytic activity. Dalton Trans. 2019, 48, 12127–12136.

[44]

Jia, H. X.; Zhang, M. Z.; Meng, T. J.; An, S. Y.; Wang, H.; Yang, X. J.; Zhang, Y. F. Facile synthesis of Fe, Co bimetal embedded nanoporous carbon polyhedron composites for an efficient oxygen evolution reaction. J. Colloid Interface Sci. 2020, 563, 189–196.

[45]

Lashgari, S. M.; Yari, H.; Mahdavian, M.; Ramezanzadeh, B.; Bahlakeh, G.; Ramezanzadeh, M. Synthesis of graphene oxide nanosheets decorated by nanoporous zeolite-imidazole (ZIF-67) based metal-organic framework with controlled-release corrosion inhibitor performance: Experimental and detailed DFT-D theoretical explorations. J. Hazard. Mater. 2021, 404, 124068.

[46]

Li, H. X.; Yao, Y. Z.; Zhang, J.; Du, J.; Xu, S. D.; Wang, C. H.; Zhang, D.; Tang, J. H.; Zhao, H. T.; Zhou, J. Degradation of phenanthrene by peroxymonosulfate activated with bimetallic metal-organic frameworks: Kinetics, mechanisms, and degradation products. Chem. Eng. J. 2020, 397, 125401.

[47]

Li, J. X.; Fan, L. L.; Hua, Q. F.; Geng, Q. H.; Zhang, Y. Y.; Fan, X. L.; Ma, L.; Wang, C. M.; Zhu, W.; Feng, X. et al. Ordered macroporous carbonous skeletons implanted with dual-phase Co/CoFe nanoparticles for boosting electrocatalytic performance. Chem. Eng. J. 2023, 470, 144399.

[48]

Zhang, H.; Zhong, J.; Zhou, G. X.; Wu, J. L.; Yang, Z. Y.; Shi, X. M. Microwave-assisted solvent-free synthesis of Zeolitic Imidazolate framework-67. J. Nanomater. 2016, 2016, 9648386.

[49]

Zhou, Q. Y.; Zhang, Z.; Cai, J. J.; Liu, B.; Zhang, Y. L.; Gong, X. F.; Sui, X.; Yu, A. P.; Zhao, L.; Wang, Z. B. et al. Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy 2020, 71, 104592.

[50]

Qian, Q. Z.; Li, Y. P.; Liu, Y.; Yu, L.; Zhang, G. Q. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 2019, 31, 1901139.

[51]

Li, J. T. Oxygen evolution reaction in energy conversion and storage: Design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 2022, 14, 112.

[52]

Ge, K.; Sun, S. J.; Zhao, Y.; Yang, K.; Wang, S.; Zhang, Z. H.; Cao, J. Y.; Yang, Y. F.; Zhang, Y.; Pan, M. W. et al. Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 12097–12102.

[53]

Hou, X. B.; Han, Z. K.; Xu, X. J.; Sarker, D.; Zhou, J.; Wu, M.; Liu, Z. C.; Huang, M. H.; Jiang, H. Q. Controllable amorphization engineering on bimetallic metal-organic frameworks for ultrafast oxygen evolution reaction. Chem. Eng. J. 2021, 418, 129330.

[54]

Chen, C. L.; Sun, M. Z.; Zhang, F.; Li, H. J.; Sun, M. R.; Fang, P.; Song, T. L.; Chen, W. X.; Dong, J. C.; Rosen, B. et al. Adjacent Fe site boosts electrocatalytic oxygen evolution at Co site in single-atom-catalyst through a dual-metal-site design. Energy Environ. Sci. 2023, 16, 1685–1696.

[55]

Li, P.; Qiang, F. Q.; Tan, X. H.; Li, Z.; Shi, J.; Liu, S.; Huang, M. H.; Chen, J. W.; Tian, W. Q.; Wu, J. Y. et al. Electronic modulation induced by decorating single-atomic Fe-Co pairs with Fe-Co alloy clusters toward enhanced ORR/OER activity. Appl. Catal. B: Environ. 2024, 340, 123231.

[56]

Tang, T. M.; Han, J. Y.; Wang, Z. L.; Niu, X. D.; Guan, J. Q. Diatomic Fe-Co catalysts synergistically catalyze oxygen evolution reaction. Nano Res. 2024, 17, 3794–3800.

[57]

Chen, J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhou, Y.; Wang, Z. Y.; Li, Y. Y.; Xu, B. B.; Li, J. T.; Sun, S. G. Interfacial Interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351.

Nano Research
Article number: 94907022
Cite this article:
Xu Y, Li Z, Cheng Z, et al. Facile synthesis of hybridized Co/Fe-ZIF under solvent-free conditions for efficient oxidation evolution reaction electrocatalysis. Nano Research, 2025, 18(1): 94907022. https://doi.org/10.26599/NR.2025.94907022
Topics:

626

Views

248

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 July 2024
Revised: 09 August 2024
Accepted: 20 August 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return