Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The constituents and geometric design of cathodic electrocatalyst to achieve high activity and durability are effective but challenging for the development of high-performance Li-O2 batteries. This study employs a mild solution precipitation method followed by thermolysis to construct a faveolate open-structured Ru-N/C matrix with a loosely braided network morphology as a bifunctional cathode. The details prove that this hybrid structure is composed of ultrafine Ru globular nanoparticles (ca. 2 nm) coated with an N-enriched carbon film and exhibits a valuable beehive through-hole character for rapid mass transport during oxygen redox catalysis. The synergistic effect of open-structured and reticular network matrix with metal–N4 coordination induces asymmetric charge distributions with moderate adsorption/desorption behaviour with oxygen intermediates. Consequently, this particular Ru-N/C matrix cathode provides a promising Li2O2 accommodation space and exhibits superior electrochemical performance in terms of a positive discharge plateau and low charge overpotential. Besides, the assembled batteries also present a high discharge capacity and a long cycle life (exceeding 283 cycles). The density functional theory (DFT) calculations also corroborate the assertion that the Ru-N/C catalyst exhibits robust electronic coupling transfer and superior bifunctional activity. As such, our work demonstrates that this type of open-structured Ru-N/C matrix is promising for fabricating high-performance quasi solid-state Li-O2 batteries.
Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.
Asadi, M.; Sayahpour, B.; Abbasi, P.; Ngo, A. T.; Karis, K.; Jokisaari, J. R.; Liu, C.; Narayanan, B.; Gerard, M.; Yasaei, P. et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere. Nature 2018, 555, 502–506.
Hu, X. L.; Chen, X.; Li, X.; Xu, C. H. Engineering the electronic interaction between single Au atoms and CoN through nitrogen-coordination bonding as an efficient bifunctional electrocatalyst for rechargeable Zn-air batteries. Adv. Funct. Mater. 2024, 34, 2316699.
Hu, X. L.; Luo, G.; Zhao, Q. N.; Wu, D.; Yang, T. X.; Wen, J.; Wang, R. H.; Xu, C. H.; Hu, N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li–O2 batteries. J. Am. Chem. Soc. 2020, 142, 16776–16786.
Zhang, X. Y.; Huang, W. K.; Zhang, J.; Wang, Y. L.; Astruc, D.; Liu, X. Facile synthesis of three-dimensional Co/N co-doped carbon nanocuboids for an enhanced oxygen reduction reaction. Inorg. Chem. Front. 2023, 10, 1739–1747.
Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.
Liu, T.; Li, W. J.; Zhang, G. W.; Yu, A. S. The effect of electrolyte with binary solvents on improving the performance of rechargeable lithium-oxygen batteries. Sustain. Energy Fuels 2024, 8, 1280–1286.
Yan, X. N.; Huang, J.; Guo, L. M.; Liu, C. T.; Dong, S. J.; Peng, Z. Q. Interrogating lithium-oxygen battery reactions and chemistry with isotope-labeling techniques: A mini review. Energy Fuels 2021, 35, 4743–4750.
Di Lecce, D.; Marangon, V.; Jung, H. G.; Tominaga, Y.; Greenbaum, S.; Hassoun, J. Glyme-based electrolytes: Suitable solutions for next-generation lithium batteries. Green Chem. 2022, 24, 1021–1048.
Zhang, P. F.; Lu, Y. Q.; Wu, Y. J.; Yin, Z. W.; Li, J. T.; Zhou, Y.; Hong, Y. H.; Li, Y. Y.; Huang, L.; Sun, S. G. High-performance rechargeable Li–CO2/O2 battery with Ru/N-doped CNT catalyst. Chem. Eng. J. 2019, 363, 224–233.
Zhao, Y. J.; Tang, W. H.; Liu, W. H.; Kong, X. H.; Zhang, D. W.; Luo, H.; Teng, K. W.; Liu, R. P. Interfacial engineering of Co3O4/Fe2O3 nano-heterostructure toward superior Li–O2 batteries. Small 2023, 19, 2205532.
Xiao, P. T.; Yun, X. R.; Chen, Y. F.; Guo, X. W.; Gao, P.; Zhou, G. M.; Zheng, C. M. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem. Soc. Rev. 2023, 52, 5255–5316.
Yu, W.; Yoshii, T.; Aziz, A.; Tang, R.; Pan, Z. Z.; Inoue, K.; Kotani, M.; Tanaka, H.; Scholtzová, E.; Tunega, D. et al. Edge-site-free and topological-defect-rich carbon cathode for high-performance lithium-oxygen batteries. Adv. Sci. 2023, 10, 2300268.
Liu, T.; Wang, L. D. Y.; Huang, T.; Yu, A. S. Well-defined carbon nanoframes containing bimetal-N-C active sites as efficient bi-functional electrocatalysts for Li–O2 batteries. Nano Res. 2019, 12, 517–523.
Feng, Y. Y.; Xue, H. R.; Wang, T.; Gong, H.; Gao, B.; Xia, W.; Jiang, C.; Li, J. J.; Huang, X. L.; He, J. P. Enhanced Li2O2 decomposition in rechargeable Li–O2 battery by incorporating WO3 nanowire array photocatalyst. ACS Sustain. Chem. Eng. 2019, 7, 5931–5939.
Hyun, S.; Son, B.; Kim, H.; Sanetuntikul, J.; Shanmugam, S. The synergistic effect of nickel cobalt sulfide nanoflakes and sulfur-doped porous carboneous nanostructure as bifunctional electrocatalyst for enhanced rechargeable Li–O2 batteries. Appl. Catal. B: Environ. 2020, 263, 118283.
Hu, X. L.; Wang, R. H.; Feng, W. L.; Xu, C. H.; Wei, Z. D. Electrocatalytic oxygen evolution activities of metal chalcogenides and phosphides: Fundamentals, origins, and future strategies. J. Energy Chem. 2023, 81, 167–191.
Hu, X. L.; Wu, Z. K.; Xu, C. H. Precise construction of RuPt dual single-atomic sites to optimize oxygen electrocatalytic behaviors for high-performance Zn-air batteries. J. Energy Chem. 2024, 97, 520–528.
Cao, X. C.; Zhang, Y.; Lu, C. Y.; Chen, L.; Zheng, X. J.; Yang, R. Z. Electronic structure modulation of Ru/W20O58 catalyst via interfacial Ru–O–W bridging bond for high-performance Li–O2 batteries. Appl. Surf. Sci. 2023, 609, 155453.
Ding, S. Q.; Wu, L.; Yuan, X. X. Regulating d-orbital electronic configuration of Ni-based chalcogenides to enhance the oxygen electrode reactions in Li–O2 batteries. Chem. Eng. J. 2023, 478, 147473.
Gao, R.; Zhou, Y.; Liu, X. F.; Wang, J. C. N-doped defective carbon layer encapsulated W2C as a multifunctional cathode catalyst for high performance Li–O2 battery. Electrochim. Acta 2017, 245, 430–437.
Zhang, J.; Ding, J.; Li, C. Q.; Li, B. J.; Li, D.; Liu, Z. Y.; Cai, Q.; Zhang, J. M.; Liu, Y. S. Fabrication of novel ternary three-dimensional RuO2/graphitic-C3N4@reduced graphene oxide aerogel composites for supercapacitors. ACS Sustain. Chem. Eng. 2017, 5, 4982–4991.
Ren, S. S.; Duan, X. D.; Liang, S.; Zhang, M. D.; Zheng, H. G. Bifunctional electrocatalysts for Zn-air batteries: Recent developments and future perspectives. J. Mater. Chem. A 2020, 8, 6144–6182.
Li, N.; Yang, T.; Lou, H.; Huang, L. J.; Ma, X. Y.; Jiang, H.; Xiao, J. X.; Xie, C.; Yang, Y. H. FeCo alloy nanoparticles encapsulated in hollow N-doped carbon as a bifunctional electrocatalyst for aqueous zinc-air batteries with a low voltage gap. Sustain. Energy Fuels 2023, 7, 5240–5248.
Li, Z. J.; Ji, S. Q.; Wang, C.; Liu, H. X.; Leng, L. P.; Du, L.; Gao, J. C.; Qiao, M.; Horton, J. H.; Wang, Y. Geometric and electronic engineering of atomically dispersed copper-cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc-air batteries. Adv. Mater. 2023, 35, 2300905.
Liu, Y. M.; Ma, J. H.; Hoang, T. K. A.; Yang, L. J.; Chen, Z. H. Well-dispersed Ni3Fe nanoparticles with a N-doped porous carbon shell for highly efficient rechargeable Zn-air batteries. Nanoscale 2023, 15, 1172–1179.
Wang, P.; Li, C. X.; Dong, S. H.; Ge, X. L.; Zhang, P.; Miao, X. G.; Zhang, Z. W.; Wang, C. X.; Yin, L. W. One-step route synthesized Co2P/Ru/N-doped carbon nanotube hybrids as bifunctional electrocatalysts for high-performance Li–O2 batteries. Small 2019, 15, 1900001.
Zheng, X. Z.; Yuan, M. W.; Su, P. Y.; Li, M. M.; Li, Z. H.; Li, F. J.; Li, H. F.; Sun, G. B. MXenes anchored Co2N/Co3O4 heterostructure with electron pulling effect promoting conversion of LiO x moieties. Chem. Eng. J. 2024, 482, 148916.
Zhao, Y. J.; Meng, K.; Luo, T.; Chen, M. X.; Niu, S.; Lin, C.; Xing, X. J.; Yang, Q. C.; Kong, X. H.; Zhang, D. W. et al. Electronic structure engineering of RuCo nanoalloys supported on nanoporous carbon for Li–O2 batteries. J. Power Sources 2024, 597, 234130.
Zhang, P.; Hui, X. B.; Nie, Y. J.; Wang, R. T.; Wang, C. X.; Zhang, Z. W.; Yin, L. W. New conceptual catalyst on spatial high-entropy alloy heterostructures for high-performance Li–O2 batteries. Small 2023, 19, 2206742.
Cheng, Y.; He, S.; Veder, J. P.; De Marco, R.; Yang, S. Z.; Jiang, S. P. Atomically dispersed bimetallic FeNi catalysts as highly efficient bifunctional catalysts for reversible oxygen evolution and oxygen reduction reactions. ChemElectroChem 2019, 6, 3478–3487.
Sha, J. Q.; Jiang, S. S.; Cai, D. P.; Xue, Y.; Li, G. J.; Xiong, Z. P.; Lei, Y.; Si, Y. J.; He, P.; Guo, C. Z. Potato-derived N-doped carbon nanoparticles incorporated with FeCo species as efficiently bifunctional electrocatalyst towards oxygen reduction and oxygen evolution reactions for rechargeable zinc-air batteries. Mater. Sci. Eng.: B 2023, 290, 116291.
Zhao, Y. L.; Wang, X.; Wang, T. K.; Li, X. X.; Fu, Y.; Zhao, G.; Xu, X. J. g-C3N4 templated synthesis of 3DOM SnO2/CN enriched with oxygen vacancies for superior NO2 gas sensing. Appl. Surf. Sci. 2022, 604, 154618.
Gao, Y. N.; Noguchi, H.; Uosaki, K. Online real-time detection of the degradation products of lithium oxygen batteries. ACS Energy Lett. 2023, 8, 1811–1817.
Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241–5247.
Wang, W. K.; Zhang, H. M.; Zhang, S. B.; Liu, Y. Y.; Wang, G. Z.; Sun, C. H.; Zhao, H. J. Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: Visible-light-driven photocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2019, 58, 16644–16650.
Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.
Huang, L. Y.; Xu, H.; Li, Y. P.; Li, H. M.; Cheng, X. N.; Xia, J. X.; Xu, Y. G.; Cai, G. B. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity. Dalton Trans. 2013, 42, 8606–8616.
Guo, F. S.; Hu, B.; Yang, C.; Zhang, J. S.; Hou, Y. D.; Wang, X. C. On-surface polymerization of in-plane highly ordered carbon nitride nanosheets toward photocatalytic mineralization of mercaptan gas. Adv. Mater. 2021, 33, 2101466.
Wu, A. M.; Shen, S. Y.; Yan, X. H.; Xia, G. F.; Zhang, Y.; Zhu, F. J.; Zhang, J. L. C x N y particles@N-doped porous graphene: A novel cathode catalyst with a remarkable cyclability for Li–O2 batteries. Nanoscale 2018, 10, 12763–12770.
Lu, Z. Y.; Liang, Q. H.; Wang, B.; Tao, Y. F.; Zhao, Y.; Lv, W.; Liu, D. H.; Zhang, C.; Weng, Z.; Liang, J. C. et al. Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes. Adv. Energy Mater. 2019, 9, 1803186.
Ye, S. F.; Wang, L. F.; Liu, F. F.; Shi, P. C.; Wang, H. Y.; Wu, X. J.; Yu, Y. g-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode. Adv. Energy Mater. 2020, 10, 2002647.
Cho, S. M.; Shim, J.; Cho, S. H.; Kim, J.; Son, B. D.; Lee, J. C.; Yoon, W. Y. Quasi-solid-state rechargeable Li–O2 batteries with high safety and long cycle life at room temperature. ACS Appl. Mater. Interfaces 2018, 10, 15634–15641.
Jiang, J. H.; Wang, A. B.; Wang, W. K.; Jin, Z. Q.; Fan, L. Z. P(VDF-HFP)-poly(sulfur-1,3-diisopropenylbenzene) functional polymer electrolyte for lithium-sulfur batteries. J. Energy Chem. 2020, 46, 114–122.
Wu, Q.; Fang, M. D.; Jiao, S. Z.; Li, S. Y.; Zhang, S. C.; Shen, Z. Y.; Mao, S. L.; Mao, J. L.; Zhang, J. H.; Tan, Y. Z. et al. Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries. Nat. Commun. 2023, 14, 6296.
453
Views
43
Downloads
0
Crossref
1
Web of Science
1
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).