AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (27.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Synthesis of faveolate open-structured Ru-N/C cathode catalyst with high bifunctional activity for rechargeable quasi-solid-state Li-O2 batteries

School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
Show Author Information

Graphical Abstract

Pore-rich carbon faveolate frameworks with Ru-N-C active sites as a promising cathodic catalyst have been successfully prepared and applied in Li-O2 batteries.

Abstract

The constituents and geometric design of cathodic electrocatalyst to achieve high activity and durability are effective but challenging for the development of high-performance Li-O2 batteries. This study employs a mild solution precipitation method followed by thermolysis to construct a faveolate open-structured Ru-N/C matrix with a loosely braided network morphology as a bifunctional cathode. The details prove that this hybrid structure is composed of ultrafine Ru globular nanoparticles (ca. 2 nm) coated with an N-enriched carbon film and exhibits a valuable beehive through-hole character for rapid mass transport during oxygen redox catalysis. The synergistic effect of open-structured and reticular network matrix with metal–N4 coordination induces asymmetric charge distributions with moderate adsorption/desorption behaviour with oxygen intermediates. Consequently, this particular Ru-N/C matrix cathode provides a promising Li2O2 accommodation space and exhibits superior electrochemical performance in terms of a positive discharge plateau and low charge overpotential. Besides, the assembled batteries also present a high discharge capacity and a long cycle life (exceeding 283 cycles). The density functional theory (DFT) calculations also corroborate the assertion that the Ru-N/C catalyst exhibits robust electronic coupling transfer and superior bifunctional activity. As such, our work demonstrates that this type of open-structured Ru-N/C matrix is promising for fabricating high-performance quasi solid-state Li-O2 batteries.

Electronic Supplementary Material

Download File(s)
7021_ESM.pdf (1.5 MB)

References

[1]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[2]

Asadi, M.; Sayahpour, B.; Abbasi, P.; Ngo, A. T.; Karis, K.; Jokisaari, J. R.; Liu, C.; Narayanan, B.; Gerard, M.; Yasaei, P. et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere. Nature 2018, 555, 502–506.

[3]

Hu, X. L.; Chen, X.; Li, X.; Xu, C. H. Engineering the electronic interaction between single Au atoms and CoN through nitrogen-coordination bonding as an efficient bifunctional electrocatalyst for rechargeable Zn-air batteries. Adv. Funct. Mater. 2024, 34, 2316699.

[4]

Hu, X. L.; Luo, G.; Zhao, Q. N.; Wu, D.; Yang, T. X.; Wen, J.; Wang, R. H.; Xu, C. H.; Hu, N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li–O2 batteries. J. Am. Chem. Soc. 2020, 142, 16776–16786.

[5]

Zhang, X. Y.; Huang, W. K.; Zhang, J.; Wang, Y. L.; Astruc, D.; Liu, X. Facile synthesis of three-dimensional Co/N co-doped carbon nanocuboids for an enhanced oxygen reduction reaction. Inorg. Chem. Front. 2023, 10, 1739–1747.

[6]

Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

[7]

Liu, T.; Li, W. J.; Zhang, G. W.; Yu, A. S. The effect of electrolyte with binary solvents on improving the performance of rechargeable lithium-oxygen batteries. Sustain. Energy Fuels 2024, 8, 1280–1286.

[8]

Yan, X. N.; Huang, J.; Guo, L. M.; Liu, C. T.; Dong, S. J.; Peng, Z. Q. Interrogating lithium-oxygen battery reactions and chemistry with isotope-labeling techniques: A mini review. Energy Fuels 2021, 35, 4743–4750.

[9]

Di Lecce, D.; Marangon, V.; Jung, H. G.; Tominaga, Y.; Greenbaum, S.; Hassoun, J. Glyme-based electrolytes: Suitable solutions for next-generation lithium batteries. Green Chem. 2022, 24, 1021–1048.

[10]

Zhang, P. F.; Lu, Y. Q.; Wu, Y. J.; Yin, Z. W.; Li, J. T.; Zhou, Y.; Hong, Y. H.; Li, Y. Y.; Huang, L.; Sun, S. G. High-performance rechargeable Li–CO2/O2 battery with Ru/N-doped CNT catalyst. Chem. Eng. J. 2019, 363, 224–233.

[11]

Zhao, Y. J.; Tang, W. H.; Liu, W. H.; Kong, X. H.; Zhang, D. W.; Luo, H.; Teng, K. W.; Liu, R. P. Interfacial engineering of Co3O4/Fe2O3 nano-heterostructure toward superior Li–O2 batteries. Small 2023, 19, 2205532.

[12]

Xiao, P. T.; Yun, X. R.; Chen, Y. F.; Guo, X. W.; Gao, P.; Zhou, G. M.; Zheng, C. M. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem. Soc. Rev. 2023, 52, 5255–5316.

[13]

Yu, W.; Yoshii, T.; Aziz, A.; Tang, R.; Pan, Z. Z.; Inoue, K.; Kotani, M.; Tanaka, H.; Scholtzová, E.; Tunega, D. et al. Edge-site-free and topological-defect-rich carbon cathode for high-performance lithium-oxygen batteries. Adv. Sci. 2023, 10, 2300268.

[14]

Liu, T.; Wang, L. D. Y.; Huang, T.; Yu, A. S. Well-defined carbon nanoframes containing bimetal-N-C active sites as efficient bi-functional electrocatalysts for Li–O2 batteries. Nano Res. 2019, 12, 517–523.

[15]

Feng, Y. Y.; Xue, H. R.; Wang, T.; Gong, H.; Gao, B.; Xia, W.; Jiang, C.; Li, J. J.; Huang, X. L.; He, J. P. Enhanced Li2O2 decomposition in rechargeable Li–O2 battery by incorporating WO3 nanowire array photocatalyst. ACS Sustain. Chem. Eng. 2019, 7, 5931–5939.

[16]

Hyun, S.; Son, B.; Kim, H.; Sanetuntikul, J.; Shanmugam, S. The synergistic effect of nickel cobalt sulfide nanoflakes and sulfur-doped porous carboneous nanostructure as bifunctional electrocatalyst for enhanced rechargeable Li–O2 batteries. Appl. Catal. B: Environ. 2020, 263, 118283.

[17]

Hu, X. L.; Wang, R. H.; Feng, W. L.; Xu, C. H.; Wei, Z. D. Electrocatalytic oxygen evolution activities of metal chalcogenides and phosphides: Fundamentals, origins, and future strategies. J. Energy Chem. 2023, 81, 167–191.

[18]

Hu, X. L.; Wu, Z. K.; Xu, C. H. Precise construction of RuPt dual single-atomic sites to optimize oxygen electrocatalytic behaviors for high-performance Zn-air batteries. J. Energy Chem. 2024, 97, 520–528.

[19]

Cao, X. C.; Zhang, Y.; Lu, C. Y.; Chen, L.; Zheng, X. J.; Yang, R. Z. Electronic structure modulation of Ru/W20O58 catalyst via interfacial Ru–O–W bridging bond for high-performance Li–O2 batteries. Appl. Surf. Sci. 2023, 609, 155453.

[20]

Ding, S. Q.; Wu, L.; Yuan, X. X. Regulating d-orbital electronic configuration of Ni-based chalcogenides to enhance the oxygen electrode reactions in Li–O2 batteries. Chem. Eng. J. 2023, 478, 147473.

[21]

Gao, R.; Zhou, Y.; Liu, X. F.; Wang, J. C. N-doped defective carbon layer encapsulated W2C as a multifunctional cathode catalyst for high performance Li–O2 battery. Electrochim. Acta 2017, 245, 430–437.

[22]

Zhang, J.; Ding, J.; Li, C. Q.; Li, B. J.; Li, D.; Liu, Z. Y.; Cai, Q.; Zhang, J. M.; Liu, Y. S. Fabrication of novel ternary three-dimensional RuO2/graphitic-C3N4@reduced graphene oxide aerogel composites for supercapacitors. ACS Sustain. Chem. Eng. 2017, 5, 4982–4991.

[23]

Ren, S. S.; Duan, X. D.; Liang, S.; Zhang, M. D.; Zheng, H. G. Bifunctional electrocatalysts for Zn-air batteries: Recent developments and future perspectives. J. Mater. Chem. A 2020, 8, 6144–6182.

[24]

Li, N.; Yang, T.; Lou, H.; Huang, L. J.; Ma, X. Y.; Jiang, H.; Xiao, J. X.; Xie, C.; Yang, Y. H. FeCo alloy nanoparticles encapsulated in hollow N-doped carbon as a bifunctional electrocatalyst for aqueous zinc-air batteries with a low voltage gap. Sustain. Energy Fuels 2023, 7, 5240–5248.

[25]

Li, Z. J.; Ji, S. Q.; Wang, C.; Liu, H. X.; Leng, L. P.; Du, L.; Gao, J. C.; Qiao, M.; Horton, J. H.; Wang, Y. Geometric and electronic engineering of atomically dispersed copper-cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc-air batteries. Adv. Mater. 2023, 35, 2300905.

[26]

Liu, Y. M.; Ma, J. H.; Hoang, T. K. A.; Yang, L. J.; Chen, Z. H. Well-dispersed Ni3Fe nanoparticles with a N-doped porous carbon shell for highly efficient rechargeable Zn-air batteries. Nanoscale 2023, 15, 1172–1179.

[27]

Wang, P.; Li, C. X.; Dong, S. H.; Ge, X. L.; Zhang, P.; Miao, X. G.; Zhang, Z. W.; Wang, C. X.; Yin, L. W. One-step route synthesized Co2P/Ru/N-doped carbon nanotube hybrids as bifunctional electrocatalysts for high-performance Li–O2 batteries. Small 2019, 15, 1900001.

[28]
Yang, R. N.; Li, J. J.; Zhang, D. M.; Zhang, X. Q.; Li, X.; Yu, H.; Guo, Z. H.; Hou, C. X.; Lian, G.; Dang, F. Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2024.109595.
[29]

Zheng, X. Z.; Yuan, M. W.; Su, P. Y.; Li, M. M.; Li, Z. H.; Li, F. J.; Li, H. F.; Sun, G. B. MXenes anchored Co2N/Co3O4 heterostructure with electron pulling effect promoting conversion of LiO x moieties. Chem. Eng. J. 2024, 482, 148916.

[30]

Zhao, Y. J.; Meng, K.; Luo, T.; Chen, M. X.; Niu, S.; Lin, C.; Xing, X. J.; Yang, Q. C.; Kong, X. H.; Zhang, D. W. et al. Electronic structure engineering of RuCo nanoalloys supported on nanoporous carbon for Li–O2 batteries. J. Power Sources 2024, 597, 234130.

[31]

Zhang, P.; Hui, X. B.; Nie, Y. J.; Wang, R. T.; Wang, C. X.; Zhang, Z. W.; Yin, L. W. New conceptual catalyst on spatial high-entropy alloy heterostructures for high-performance Li–O2 batteries. Small 2023, 19, 2206742.

[32]

Cheng, Y.; He, S.; Veder, J. P.; De Marco, R.; Yang, S. Z.; Jiang, S. P. Atomically dispersed bimetallic FeNi catalysts as highly efficient bifunctional catalysts for reversible oxygen evolution and oxygen reduction reactions. ChemElectroChem 2019, 6, 3478–3487.

[33]

Sha, J. Q.; Jiang, S. S.; Cai, D. P.; Xue, Y.; Li, G. J.; Xiong, Z. P.; Lei, Y.; Si, Y. J.; He, P.; Guo, C. Z. Potato-derived N-doped carbon nanoparticles incorporated with FeCo species as efficiently bifunctional electrocatalyst towards oxygen reduction and oxygen evolution reactions for rechargeable zinc-air batteries. Mater. Sci. Eng.: B 2023, 290, 116291.

[34]

Zhao, Y. L.; Wang, X.; Wang, T. K.; Li, X. X.; Fu, Y.; Zhao, G.; Xu, X. J. g-C3N4 templated synthesis of 3DOM SnO2/CN enriched with oxygen vacancies for superior NO2 gas sensing. Appl. Surf. Sci. 2022, 604, 154618.

[35]

Gao, Y. N.; Noguchi, H.; Uosaki, K. Online real-time detection of the degradation products of lithium oxygen batteries. ACS Energy Lett. 2023, 8, 1811–1817.

[36]

Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241–5247.

[37]

Wang, W. K.; Zhang, H. M.; Zhang, S. B.; Liu, Y. Y.; Wang, G. Z.; Sun, C. H.; Zhao, H. J. Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: Visible-light-driven photocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2019, 58, 16644–16650.

[38]

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

[39]

Huang, L. Y.; Xu, H.; Li, Y. P.; Li, H. M.; Cheng, X. N.; Xia, J. X.; Xu, Y. G.; Cai, G. B. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity. Dalton Trans. 2013, 42, 8606–8616.

[40]

Guo, F. S.; Hu, B.; Yang, C.; Zhang, J. S.; Hou, Y. D.; Wang, X. C. On-surface polymerization of in-plane highly ordered carbon nitride nanosheets toward photocatalytic mineralization of mercaptan gas. Adv. Mater. 2021, 33, 2101466.

[41]

Wu, A. M.; Shen, S. Y.; Yan, X. H.; Xia, G. F.; Zhang, Y.; Zhu, F. J.; Zhang, J. L. C x N y particles@N-doped porous graphene: A novel cathode catalyst with a remarkable cyclability for Li–O2 batteries. Nanoscale 2018, 10, 12763–12770.

[42]

Lu, Z. Y.; Liang, Q. H.; Wang, B.; Tao, Y. F.; Zhao, Y.; Lv, W.; Liu, D. H.; Zhang, C.; Weng, Z.; Liang, J. C. et al. Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes. Adv. Energy Mater. 2019, 9, 1803186.

[43]

Ye, S. F.; Wang, L. F.; Liu, F. F.; Shi, P. C.; Wang, H. Y.; Wu, X. J.; Yu, Y. g-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode. Adv. Energy Mater. 2020, 10, 2002647.

[44]

Cho, S. M.; Shim, J.; Cho, S. H.; Kim, J.; Son, B. D.; Lee, J. C.; Yoon, W. Y. Quasi-solid-state rechargeable Li–O2 batteries with high safety and long cycle life at room temperature. ACS Appl. Mater. Interfaces 2018, 10, 15634–15641.

[45]

Jiang, J. H.; Wang, A. B.; Wang, W. K.; Jin, Z. Q.; Fan, L. Z. P(VDF-HFP)-poly(sulfur-1,3-diisopropenylbenzene) functional polymer electrolyte for lithium-sulfur batteries. J. Energy Chem. 2020, 46, 114–122.

[46]

Wu, Q.; Fang, M. D.; Jiao, S. Z.; Li, S. Y.; Zhang, S. C.; Shen, Z. Y.; Mao, S. L.; Mao, J. L.; Zhang, J. H.; Tan, Y. Z. et al. Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries. Nat. Commun. 2023, 14, 6296.

Nano Research
Article number: 94907021
Cite this article:
Liu T. Synthesis of faveolate open-structured Ru-N/C cathode catalyst with high bifunctional activity for rechargeable quasi-solid-state Li-O2 batteries. Nano Research, 2025, 18(1): 94907021. https://doi.org/10.26599/NR.2025.94907021
Topics:

453

Views

43

Downloads

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 08 July 2024
Revised: 21 August 2024
Accepted: 02 September 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return