Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrocatalytic chemical oxidation (ECO) is an energy-efficient anodic reaction alternative to the oxygen evolution reaction (OER). ECO lowers the reaction potential and yields higher-value fine chemicals at the anode. The catalyst material plays a crucial role in influencing and determining ECO performance. Enhancing catalyst performance encompasses aspects such as activity, stability, selectivity and cost. Nickel-based electrocatalysts have garnered significant attention for their exceptional performance and widespread use in ECO applications. By modifying nickel-based electrocatalysts, the formation of NiOOH active centers can be encouraged. Strategies such as adjusting size and morphology, doping, introducing defects and constructing heterojunctions are advantageous for enhancing performance. Given the rapid advancements in related research fields, it is imperative to comprehend the mechanisms of nickel-based electrocatalysts in ECO and develop innovative catalysts. This article provides an overview of the modification strategies of nickel-based electrocatalysts, as well as their applications and mechanisms in ECO.
Liu, Y. H.; Zhang, K. W.; Zhang, D. X.; Dong, W. X.; Jiang, T. Y.; Zhou, H. B.; Li, L. X.; Mao, B. D. Industrial stainless steel meshes for efficient electrocatalytic hydrogen evolution. J. Energy Storage 2021, 41, 102844.
Zhang, M. Y.; Zhou, W. D.; Yan, X. H.; Huang, X. P.; Wu, S. T.; Pan, J. M.; Shahnavaz, Z.; Li, T.; Yu, X. Y. Sodium dodecyl sulfate intercalated two-dimensional nickel-cobalt layered double hydroxides to synthesize multifunctional nanomaterials for supercapacitors and electrocatalytic hydrogen evolution. Fuel 2023, 333, 126323.
Guan, S. Y.; Yuan, Z. L.; Zhao, S. Q.; Zhuang, Z. C.; Zhang, H. H.; Shen, R. F.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Efficient hydrogen generation from ammonia borane hydrolysis on a tandem ruthenium-platinum-titanium catalyst. Angew. Chem., Int. Ed. 2024, 63, e202408193.
Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.
Li, Z. H.; Yan, Y. F.; Xu, S. M.; Zhou, H.; Xu, M.; Ma, L. N.; Shao, M. F.; Kong, X. G.; Wang, B.; Zheng, L. R. et al. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst. Nat. Commun. 2022, 13, 147.
Bhuvanendran, N.; Ravichandran, S.; Jayaseelan, S. S.; Xu, Q.; Khotseng, L.; Su, H. N. Improved bi-functional oxygen electrocatalytic performance of Pt-Ir alloy nanoparticles embedded on MWCNT with Pt-enriched surfaces. Energy 2020, 211, 118695.
Dong, W. X.; Zhou, H. B.; Mao, B. D.; Zhang, Z. Y.; Liu, Y. S.; Liu, Y. H.; Li, F. H.; Zhang, D. Q.; Zhang, D. X.; Shi, W. D. Efficient MOF- derived V–Ni3S2 nanosheet arrays for electrocatalytic overall water splitting in alkali. Int. J. Hydrogen Energy 2021, 46, 10773–10782.
Zhu, J. J.; Lu, Y. K.; Liu, C. C.; Cheng, T.; Xu, S. J.; Li, D.; Jiang, D. L. Template confined construction of Fe-NiCoP/NiCoP/NF heterostructures for highly efficient electrocatalytic oxygen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 37746–37756.
Xiao, L.; Dai, W. D.; Mou, S. Y.; Wang, X. Y.; Cheng, Q.; Dong, F. Coupling electrocatalytic cathodic nitrate reduction with anodic formaldehyde oxidation at ultra-low potential over Cu2O. Energy Environ. Sci. 2023, 16, 2696–2704.
Wang, Q. X.; Liu, J. F.; Li, T.; Zhang, T.; Arbiol, J.; Yan, S. X.; Wang, Y.; Li, H. M.; Cabot, A. Pd2Ga nanorods as highly active bifunctional catalysts for electrosynthesis of acetic acid coupled with hydrogen production. Chem. Eng. J. 2022, 446, 136878.
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.
Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.
Zhang, Z. Y.; Xin, L.; Qi, J.; Chadderdon, D. J.; Sun, K.; Warsko, K. M.; Li, W. Z. Selective electro-oxidation of glycerol to tartronate or mesoxalate on Au nanoparticle catalyst via electrode potential tuning in anion-exchange membrane electro-catalytic flow reactor. Appl. Catal. B: Environ. 2014, 147, 871–878.
Jiao, S. L.; Fu, X. W.; Wang, S. Y.; Zhao, Y. Perfecting electrocatalysts via imperfections: Towards the large-scale deployment of water electrolysis technology. Energy Environ. Sci. 2021, 14, 1722–1770.
Thiyagarajan, D.; Gao, M. Y.; Sun, L.; Dong, X. C.; Zheng, D. H.; Wahab, M. A.; Will, G.; Lin, J. J. Nanoarchitectured porous Cu-CoP nanoplates as electrocatalysts for efficient oxygen evolution reaction. Chem. Eng. J. 2022, 432, 134303.
Taitt, B. J.; Nam, D. H.; Choi, K. S. A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ACS Catal. 2019, 9, 660–670.
Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.
Hassaninejad-Darzi, S. K. Encapsulation of a nickel Salen complex in nanozeolite LTA as a carbon paste electrode modifier for electrocatalytic oxidation of hydrazine. Chin. J. Catal. 2018, 39, 283–296.
Li, D.; Zhou, X. M.; Ruan, Q. D.; Liu, L. L.; Liu, J. Y.; Wang, B.; Wang, Y. C.; Zhang, X. L.; Chen, R. S.; Ni, H. W. et al. Suppression of passivation on nickel hydroxide in electrocatalytic urea oxidization. Adv. Funct. Mater. 2024, 34, 2313680.
Liu, C. F.; Shi, X. R.; Yue, K. H.; Wang, P. J.; Zhan, K.; Wang, X. Y.; Xia, B. Y.; Yan, Y. S-species-evoked high-valence Ni2+ δ of the evolved β-Ni(OH)2 electrode for selective oxidation of 5-hydroxymethylfurfural. Adv. Mater. 2023, 35, 2211177.
Dubale, A. A.; Zheng, Y. Y.; Wang, H. L.; Hübner, R.; Li, Y.; Yang, J.; Zhang, J. W.; Sethi, N. K.; He, L. Q.; Zheng, Z. K. et al. High-performance bismuth-doped nickel aerogel electrocatalyst for the methanol oxidation reaction. Angew. Chem., Int. Ed. 2020, 59, 13891–13899.
Xu, Y.; Liu, M. Y.; Wang, S. Q.; Ren, K. L.; Wang, M. Z.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Integrating electrocatalytic hydrogen generation with selective oxidation of glycerol to formate over bifunctional nitrogen-doped carbon coated nickel-molybdenum-nitrogen nanowire arrays. Appl. Catal. B: Environ. 2021, 298, 120493.
Sun, Y. X.; Shin, H.; Wang, F. Y.; Tian, B. L.; Chiang, C. W.; Liu, S. T.; Li, X. S.; Wang, Y. Q.; Tang, L. Y.; Goddard III, W. A. et al. Highly selective electrocatalytic oxidation of amines to nitriles assisted by water oxidation on metal-doped α-Ni(OH)2. J. Am. Chem. Soc. 2022, 144, 15185–15192.
Cui, X.; Chen, M. L.; Xiong, R.; Sun, J.; Liu, X. W.; Geng, B. Y. Ultrastable and efficient H2 production via membrane-free hybrid water electrolysis over a bifunctional catalyst of hierarchical Mo-Ni alloy nanoparticles. J. Mater. Chem. A 2019, 7, 16501–16507.
Khakyzadeh, V.; Sediqi, S. The electro-oxidation of primary alcohols via a coral-shaped cobalt metal-organic framework modified graphite electrode in neutral media. Sci. Rep. 2022, 12, 8560.
Peng, K.; Bhuvanendran, N.; Ravichandran, S.; Zhang, W. Q.; Ma, Q.; Xing, L.; Xu, Q.; Khotseng, L.; Su, H. N. Carbon supported PtPdCr ternary alloy nanoparticles with enhanced electrocatalytic activity and durability for methanol oxidation reaction. Int. J. Hydrogen Energy 2020, 45, 22752–22760.
Badalyan, A.; Stahl, S. S. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. Nature 2016, 535, 406–410.
Bender, M. T.; Warburton, R. E.; Hammes-Schiffer, S.; Choi, K. S. Understanding hydrogen atom and hydride transfer processes during electrochemical alcohol and aldehyde oxidation. ACS Catal. 2021, 11, 15110–15124.
Fleischmann, M.; Korinek, K.; Pletcher, D. The oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem. Interfacial Electrochem. 1971, 31, 39–49.
Bender, M. T.; Choi, K. S. Electrochemical dehydrogenation pathways of amines to nitriles on NiOOH. JACS Au 2022, 2, 1169–1180.
McLoughlin, E. A.; Armstrong, K. C.; Waymouth, R. M. Electrochemically regenerable hydrogen atom acceptors: Mediators in electrocatalytic alcohol oxidation reactions. ACS Catal. 2020, 10, 11654–11662.
Bender, M. T.; Lam, Y. C.; Hammes-Schiffer, S.; Choi, K. S. Unraveling two pathways for electrochemical alcohol and aldehyde oxidation on NiOOH. J. Am. Chem. Soc. 2020, 142, 21538–21547.
Hao, Y. M.; Li, J. L.; Cao, X. T.; Meng, L. S.; Wu, J. X.; Yang, X. J.; Li, Y. F.; Liu, Z. P.; Gong, M. Origin of the universal potential-dependent organic oxidation on nickel oxyhydroxide. ACS Catal. 2023, 13, 2916–2927.
Zhu, B. T.; Dong, B.; Wang, F.; Yang, Q. F.; He, Y. P.; Zhang, C. J.; Jin, P.; Feng, L. Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides. Nat. Commun. 2023, 14, 1686.
Huang, H. L.; Yu, C.; Han, X. T.; Huang, H. W.; Wei, Q. B.; Guo, W.; Wang, Z.; Qiu, J. S. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA·cm−2. Energy Environ. Sci. 2020, 13, 4990–4999.
Goetz, M. K.; Bender, M. T.; Choi, K. S. Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH. Nat. Commun. 2022, 13, 5848.
Luo, H.; Barrio, J.; Sunny, N.; Li, A.; Steier, L.; Shah, N.; Stephens, I. E. L.; Titirici, M. M. Progress and perspectives in photo- and electrochemical-oxidation of biomass for sustainable chemicals and hydrogen production. Adv. Energy Mater. 2021, 11, 2101180.
Luo, H.; Yukuhiro, V. Y.; Fernández, P. S.; Feng, J. Y.; Thompson, P.; Rao, R. R.; Cai, R. S.; Favero, S.; Haigh, S. J.; Durrant, J. R. et al. Role of Ni in PtNi bimetallic electrocatalysts for hydrogen and value-added chemicals coproduction via glycerol electrooxidation. ACS Catal. 2022, 12, 14492–14506.
Li, S. L.; Ma, P. J.; Gao, C. L.; Liu, L. J.; Wang, X. L.; Shakour, M.; Chernikov, R.; Wang, K. W.; Liu, D. M.; Ma, R. G. et al. Reconstruction-induced NiCu-based catalysts towards paired electrochemical refining. Energy Environ. Sci. 2022, 15, 3004–3014.
Si, D.; Xiong, B. Y.; Chen, L. S.; Shi, J. L. Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution. Chem. Catal. 2021, 1, 941–955.
Yan, Y. F.; Zhou, H.; Xu, S. M.; Yang, J. R.; Hao, P. J.; Cai, X.; Ren, Y.; Xu, M.; Kong, X. G.; Shao, M. F. et al. Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities. J. Am. Chem. Soc. 2023, 145, 6144–6155.
Liu, F. L.; Gao, X. T.; Shi, R.; Guo, Z. X.; Tse, E. C. M.; Chen, Y. Concerted and selective electrooxidation of polyethylene-terephthalate-derived alcohol to glycolic acid at an industry-level current density over a Pd-Ni(OH)2 catalyst. Angew. Chem., Int. Ed. 2023, 62, e202300094.
Chen, W.; Xu, L. T.; Zhu, X. R.; Huang, Y. C.; Zhou, W.; Wang, D. D.; Zhou, Y. Y.; Du, S. Q.; Li, Q. L.; Xie, C. et al. Unveiling the electrooxidation of urea: Intramolecular coupling of the N–N bond. Angew. Chem., Int. Ed. 2021, 60, 7297–7307.
Li, J. N.; Li, J. L.; Liu, T.; Chen, L.; Li, Y. F.; Wang, H. L.; Chen, X. R.; Gong, M.; Liu, Z. P.; Yang, X. J. Deciphering and suppressing over-oxidized nitrogen in nickel-catalyzed urea electrolysis. Angew. Chem., Int. Ed. 2021, 60, 26656–26662.
Song, Y. C.; Woo, J. H.; Oh, G. G.; Kim, D. H.; Lee, C. Y.; Kim, H. W. External electric field promotes ammonia stripping from wastewater. Water Res. 2021, 203, 117518.
Vikrant, K.; Kim, K. H.; Dong, F.; Giannakoudakis, D. A. Photocatalytic platforms for removal of ammonia from gaseous and aqueous matrixes: Status and challenges. ACS Catal. 2020, 10, 8683–8716.
Lyu, Z. H.; Fu, J. J.; Tang, T.; Zhang, J. N.; Hu, J. S. Design of ammonia oxidation electrocatalysts for efficient direct ammonia fuel cells. EnergyChem 2023, 5, 100093.
Wu, L.; Tang, D. J.; Xue, J.; Liu, S. Q.; Wang, J. M.; Ji, H. W.; Chen, C. C.; Zhang, Y. C.; Zhao, J. C. Competitive non-radical nucleophilic attack pathways for NH3 oxidation and H2O oxidation on hematite photoanodes. Angew. Chem., Int. Ed. 2022, 61, e202214580.
Oswin, H. G.; Salomon, M. The anodic oxidation of ammonia at platinum black electrodes in aqueous KOH electrolyte. Can. J. Chem. 1963, 41, 1686–1694.
Siddharth, K.; Chan, Y.; Wang, L.; Shao, M. H. Ammonia electro-oxidation reaction: Recent development in mechanistic understanding and electrocatalyst design. Curr. Opin. Electrochem. 2018, 9, 151–157.
Gerischer, H.; Mauerer, A. Untersuchungen zur anodischen oxidation von Ammoniak an Platin-Elektroden. J. Electroanal. Chem. Interfacial Electrochem. 1970, 25, 421–433.
Tian, Y. R.; Mao, Z. X.; Wang, L. Q.; Liang, J. Green chemistry: Advanced electrocatalysts and system design for ammonia oxidation. Small Struct. 2023, 4, 2200266.
Almomani, F.; Bhosale, R.; Khraisheh, M.; Kumar, A.; Tawalbeh, M. Electrochemical oxidation of ammonia on nickel oxide nanoparticles. Int. J. Hydrogen Energy 2020, 45, 10398–10408.
Allagui, A.; Sarfraz, S.; Ntais, S.; Al momani, F.; Baranova, E. A. Electrochemical behavior of ammonia on Ni98Pd2 nano-structured catalyst. Int. J. Hydrogen Energy 2014, 39, 41–48.
Li, Y. P.; Niu, S. W.; Liu, P. G.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, Y.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316755.
Liu, Q.; Liao, X. B.; Tang, Y. H.; Wang, J. H.; Lv, X. Z.; Pan, X. L.; Lu, R. H.; Zhao, Y.; Yu, X. Y.; Wu, H. B. Low-coordinated cobalt arrays for efficient hydrazine electrooxidation. Energy Environ. Sci. 2022, 15, 3246–3256.
Zhou, L.; Shao, M. F.; Zhang, C.; Zhao, J. W.; He, S.; Rao, D. M.; Wei, M.; Evans, D. G.; Duan, X. Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation. Adv. Mater. 2017, 29, 1604080.
Wen, H.; Gan, L. Y.; Dai, H. B.; Wen, X. P.; Wu, L. S.; Wu, H.; Wang, P. In situ grown Ni phosphide nanowire array on Ni foam as a high-performance catalyst for hydrazine electrooxidation. Appl. Catal. B: Environ. 2019, 241, 292–298.
Zhang, J. H.; Liu, Y.; Li, J. M.; Jin, X.; Li, Y. P.; Qian, Q. Z.; Wang, Y. X.; El-Harairy, A.; Li, Z. Y.; Zhu, Y. et al. Vanadium substitution steering reaction kinetics acceleration for Ni3N nanosheets endows exceptionally energy-saving hydrogen evolution coupled with hydrazine oxidation. ACS Appl. Mater. Interfaces 2021, 13, 3881–3890.
Xu, X. F.; Chen, H. C.; Li, L. F.; Humayun, M.; Zhang, X.; Sun, H. C.; Debecker, D. P.; Zhang, W. J.; Dai, L. M.; Wang, C. D. Leveraging metal nodes in metal-organic frameworks for advanced anodic hydrazine oxidation assisted seawater splitting. ACS Nano 2023, 17, 10906–10917.
Wang, Y.; Xue, Y. Y.; Yan, L. T.; Li, H. P.; Li, Y. P.; Yuan, E. H.; Li, M.; Li, S. N.; Zhai, Q. G. Multimetal incorporation into 2D conductive metal-organic framework nanowires enabling excellent electrocatalytic oxidation of benzylamine to benzonitrile. ACS Appl. Mater. Interfaces 2020, 12, 24786–24795.
Wei, K. L.; Wang, X.; Jiao, X. L.; Li, C.; Chen, D. R. Self-supported 2D Fe-doped Ni-MOF nanosheets as highly efficient and stable electrocatalysts for benzylamine oxidation. Appl. Surf. Sci. 2022, 578, 152065.
Ding, Y.; Miao, B. Q.; Li, S. N.; Jiang, Y. C.; Liu, Y. Y.; Yao, H. C.; Chen, Y. Benzylamine oxidation boosted electrochemical water-splitting: Hydrogen and benzonitrile co-production at ultra-thin Ni2P nanomeshes grown on nickel foam. Appl. Catal. B: Environ. 2020, 268, 118393.
Ren, Z.; Yang, Y. S.; Wang, S.; Li, X. L.; Feng, H. S.; Wang, L.; Li, Y. M.; Zhang, X.; Wei, M. Pt atomic clusters catalysts with local charge transfer towards selective oxidation of furfural. Appl. Catal. B: Environ. 2021, 295, 120290.
Liu, B. Y.; Zhang, M.; Liu, Y. Y.; Wang, Y. C.; Yan, K. Electrodeposited 3D hierarchical NiFe microflowers assembled from nanosheets robust for the selective electrooxidation of furfuryl alcohol. Green Energy Environ. 2023, 8, 874–882.
Fang, Z. Y.; Zhang, P. L.; Wang, M.; Li, F. S.; Wu, X. J.; Fan, K.; Sun, L. C. Selective electro-oxidation of alcohols to the corresponding aldehydes in aqueous solution via Cu(III) intermediates from CuO nanorods. ACS Sustainable Chem. Eng. 2021, 9, 11855–11861.
Lu, L. Y.; Wen, C. Y.; Wang, H. Y.; Li, Y. H.; Wu, J. C.; Wang, C. G. Tailoring the electron structure and substrate adsorption energy of Ni hydroxide via Co doping to enhance the electrooxidation of biomass-derived chemicals. J. Catal. 2023, 424, 1–8.
Li, S. Q.; Wang, S. B.; Wang, Y. H.; He, J. H.; Li, K.; Xu, Y. J.; Wang, M. X.; Zhao, S. Y.; Li, X. N.; Zhong, X. et al. Doped Mn enhanced NiS electrooxidation performance of HMF into FDCA at industrial-level current density. Adv. Funct. Mater. 2023, 33, 2214488.
Yang, Z. H.; Zhang, B. L.; Yan, C. Y.; Xue, Z. M.; Mu, T. C. The pivot to achieve high current density for biomass electrooxidation: Accelerating the reduction of Ni3+ to Ni2+. Appl. Catal. B: Environ. 2023, 330, 122590.
Zhao, Y. Y.; Cai, M. K.; Xian, J. H.; Sun, Y. M.; Li, G. Q. Recent advances in the electrocatalytic synthesis of 2,5-furandicarboxylic acid from 5-(hydroxymethyl)furfural. J. Mater. Chem. A 2021, 9, 20164–20183.
Chen, C. L.; Wang, L. C.; Zhu, B.; Zhou, Z. Q.; El-Hout, S. I.; Yang, J.; Zhang, J. 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: Catalysts, processes and reaction mechanism. J. Energy Chem. 2021, 54, 528–554.
Pang, X. L.; Bai, H. Y.; Zhao, H. Q.; Fan, W. Q.; Shi, W. D. Efficient electrocatalytic oxidation of 5-hydroxymethylfurfural coupled with 4-nitrophenol hydrogenation in a water system. ACS Catal. 2022, 12, 1545–1557.
Jiang, X. L.; Li, W.; Liu, Y. X.; Zhao, L.; Chen, Z. K.; Zhang, L.; Zhang, Y. G.; Yun, S. N. Electrocatalytic oxidation of 5-hydroxymethylfurfural for sustainable 2,5-furandicarboxylic acid production-from mechanism to catalysts design. SusMat 2023, 3, 21–43.
Wu, J. C.; Kong, Z. J.; Li, Y. Y.; Lu, Y. X.; Zhou, P.; Wang, H. F.; Xu, L. T.; Wang, S. Y.; Zou, Y. Q. Unveiling the adsorption behavior and redox properties of PtNi nanowire for biomass-derived molecules electrooxidation. ACS Nano 2022, 16, 21518–21526.
Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Low-dimensional metallic nanomaterials for advanced electrocatalysis. Adv. Funct. Mater. 2020, 30, 2006317.
Liu, Y. L.; Zheng, Z. Y.; Jabeen, S.; Liu, N. Y.; Liu, Y. X.; Cheng, Y. Y.; Li, Y. X.; Yu, J. W.; Wu, X.; Yan, N. N. et al. Mechanochemical route to fabricate an efficient nitrate reduction electrocatalyst. Nano Res. 2024, 17, 4889–4897.
Wu, T. Z.; Han, M. Y.; Xu, Z. C. J. Size effects of electrocatalysts: More than a variation of surface area. ACS Nano 2022, 16, 8531–8539.
Zhou, A. W.; Wang, D. S.; Li, Y. D. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microstructures 2022, 2, 2022005.
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.
Zhang, S.; Wang, R. Y.; Zhang, X.; Zhao, H. Recent advances in single-atom alloys: Preparation methods and applications in heterogeneous catalysis. RSC Adv. 2024, 14, 3936–3951.
Li, L. L.; Zhao, Z. J.; Zhang, G.; Cheng, D. F.; Chang, X.; Yuan, X. T.; Wang, T.; Gong, J. L. Neural network accelerated investigation of the dynamic structure–performance relations of electrochemical CO2 reduction over SnO x surfaces. Research 2023, 6, 0067.
Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.
Wang, H. W.; Gu, X. K.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Chen, S.; Cao, L. N.; Li, W. X.; Lu, J. L. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 2019, 5, eaat6413.
Zhong, J.; Shen, Y. L.; Zhu, P.; Yao, S.; An, C. H. Size-effect on Ni electrocatalyst: The case of electrochemical benzyl alcohol oxidation. Nano Res. 2023, 16, 202–208.
Liu, G. H.; Nie, T. Q.; Wang, H. J.; Shen, T. Y.; Sun, X. L.; Bai, S.; Zheng, L. R.; Song, Y. F. Size sensitivity of supported palladium species on layered double hydroxides for the electro-oxidation dehydrogenation of hydrazine: From nanoparticles to nanoclusters and single atoms. ACS Catal. 2022, 12, 10711–10717.
Jin, T.; Han, Q. Q.; Wang, Y. J.; Jiao, L. F. 1D nanomaterials: Design, synthesis, and applications in sodium-ion batteries. Small 2018, 14, 1703086.
Garnett, E.; Mai, L. Q.; Yang, P. D. Introduction: 1D nanomaterials/nanowires. Chem. Rev. 2019, 119, 8955–8957.
Chen, F.; Yang, F.; Sheng, C.; Li, J. Z.; Xu, H.; Qing, Y.; Chen, S.; Wu, Y. Q.; Lu, X. H. Electronic structure modulation of nickel hydroxide porous nanowire arrays via manganese doping for urea-assisted energy-efficient hydrogen generation. J. Colloid Interface Sci. 2022, 626, 445–452.
Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.
Yu, Z. Y.; Lang, C. C.; Gao, M. R.; Chen, Y.; Fu, Q. Q.; Duan, Y.; Yu, S. H. Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 2018, 11, 1890–1897.
Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.
Qiu, W. B.; Qin, S. M.; Li, Y. B.; Cao, N.; Cui, W. R.; Zhang, Z. D.; Zhuang, Z. C.; Wang, D. S.; Zhang, Y. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem., Int. Ed. 2024, 63, e202402684.
Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem., Int. Ed. 2024, 63, e202405637.
Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.
Yang, J. R.; Zhu, C. X.; Wang, D. S. A simple organo-electrocatalysis system for the chlor-related industry. Angew. Chem., Int. Ed. 2024, 63, e202406883.
Jiang, H.; Bu, S. Y.; Gao, Q. L.; Long, J.; Wang, P. F.; Lee, C. S.; Zhang, W. J. Ultrathin two-dimensional nickel-organic framework nanosheets for efficient electrocatalytic urea oxidation. Mater. Today Energy 2022, 27, 101024.
Hao, J.; Liu, J. W.; Wu, D.; Chen, M. X.; Liang, Y.; Wang, Q.; Wang, L.; Fu, X. Z.; Luo, J. L. In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Appl. Catal. B: Environ. 2021, 281, 119510.
Zhang, J. F.; Gong, W. B.; Yin, H. J.; Wang, D. D.; Zhang, Y. X.; Zhang, H. M.; Wang, G. Z.; Zhao, H. J. In situ growth of ultrathin Ni(OH)2 nanosheets as catalyst for electrocatalytic oxidation reactions. ChemSusChem 2021, 14, 2935–2942.
Zhu, Y. J.; Liu, C.; Cui, S. W.; Lu, Z. R.; Ye, J. Y.; Wen, Y. Z.; Shi, W. J.; Huang, X. X.; Xue, L. Y.; Bian, J. J. et al. Multistep dissolution of lamellar crystals generates superthin amorphous Ni(OH)2 catalyst for UOR. Adv. Mater. 2023, 35, 2301549.
Liu, N. Y.; Wu, R. Q.; Liu, Y. X.; Liu, Y. L.; Deng, P. J.; Li, Y. X.; Du, Y. C.; Cheng, Y. Y.; Zhuang, Z. C.; Kang, Z. H. et al. Oxygen vacancy engineering of Fe-doped NiMoO4 for electrocatalytic N2 fixation to NH3. Inorg. Chem. 2023, 62, 11990–12000.
Zhuang, C. Q.; Chang, Y.; Li, W. M.; Li, S. J.; Xu, P.; Zhang, H.; Zhang, Y. H.; Zhang, C.; Gao, J. F.; Chen, G. et al. Light-induced variation of lithium coordination environment in g-C3N4 nanosheet for highly efficient oxygen reduction reactions. ACS Nano 2024, 18, 5206–5217.
Zhuang, C. Q.; Li, W. M.; Chang, Y.; Li, S. J.; Zhang, Y. H.; Li, Y. L.; Gao, J. F.; Chen, G.; Kang, Z. H. Coordination environment dominated catalytic selectivity of photocatalytic hydrogen and oxygen reduction over switchable gallium and nitrogen active sites. J. Mater. Chem. A 2024, 12, 5711–5718.
Lv, L. Y.; Tan, H.; Kong, Y.; Tang, B.; Ji, Q. Q.; Liu, Y. Y.; Wang, C.; Zhuang, Z. C.; Wang, H. J.; Ge, M. et al. Breaking the scaling relationship in C-N coupling via the doping effects for efficient urea electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202401943.
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.
Qi, Z. J.; Zhou, Y.; Guan, R. N.; Fu, Y. S.; Baek, J. B. Tuning the coordination environment of carbon-based single-atom catalysts via doping with multiple heteroatoms and their applications in electrocatalysis. Adv. Mater. 2023, 35, 2210575.
Wang, S. S.; Zhao, K.; Chen, Z.; Wang, L.; Qi, Z. H.; Hao, J. H.; Shi, W. D. New insights into cations effect in oxygen evolution reaction. Chem. Eng. J. 2022, 433, 133518.
Wu, X.; Tong, Z.; Liu, Y. L.; Li, Y. X.; Cheng, Y. Y.; Yu, J. W.; Cao, P.; Zhuang, C. Q.; Shi, Q. Z.; Liu, N. Y. et al. Modification of the CuO electronic structure for enhanced selective electrochemical CO2 reduction to ethylene. Nano Res. 2024, 17, 7194–7202.
Zhao, C. X.; Wang, H. F.; Li, B. Q.; Zhang, Q. Multianion transition metal compounds: Synthesis, regulation, and electrocatalytic applications. Acc. Mater. Res. 2021, 2, 1082–1092.
Wang, S. C.; Zhang, M. Y.; Mu, X. Q.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Atomically dispersed multi-site catalysts: Bifunctional oxygen electrocatalysts boost flexible zinc-air battery performance. Energy Environ. Sci. 2024, 17, 4847–4870.
Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.
Zhang, Y. F.; Liu, L. S.; Li, Y. X.; Mu, X. Q.; Mu, S. C.; Liu, S. L.; Dai, Z. H. Strong synergy between physical and chemical properties: Insight into optimization of atomically dispersed oxygen reduction catalysts. J. Energy Chem. 2024, 91, 36–49.
Zhang, A.; Liang, Y. X.; Zhang, H.; Geng, Z. G.; Zeng, J. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021, 50, 9817–9844.
Liu, Y. L.; Zhuang, Z. C.; Liu, Y. X.; Liu, N. Y.; Li, Y. X.; Cheng, Y. Y.; Yu, J. W.; Yu, R. H.; Li, H. T.; Wang, D. S. Shear-strained Pd single-atom electrocatalysts for nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2024, 63, e202411396.
Wang, J.; Teschner, D.; Yao, Y. Y.; Huang, X.; Willinger, M.; Shao, L. D.; Schlögl, R. Fabrication of nanoscale NiO/Ni heterostructures as electrocatalysts for efficient methanol oxidation. J. Mater. Chem. A 2017, 5, 9946–9951.
Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.
Yang, J. R.; Zhu, C. X.; Li, W. H.; Zheng, X. S.; Wang, D. S. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions. Angew. Chem., Int. Ed. 2024, 63, e202314382.
Wang, X. Y.; Pan, Y. Z.; Yang, J. R.; Li, W. H.; Gan, T.; Pan, Y. M.; Tang, H. T.; Wang, D. S. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202404295.
Tao, Y.; Guan, J. P.; Zhang, J.; Hu, S. Y.; Ma, R. Z.; Zheng, H. R.; Gong, J. X.; Zhuang, Z. C.; Liu, S. J.; Ou, H. H. et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem., Int. Ed. 2024, 63, e202400625.
Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.
Liang, X.; Fu, N. H.; Yao, S. C.; Li, Z.; Li, Y. D. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174.
Wang, S. W.; Wang, L. G.; Wang, D. S.; Li, Y. D. Recent advances of single-atom catalysts in CO2 conversion. Energy Environ. Sci. 2023, 16, 2759–2803.
Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.
Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202315621.
Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.
Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.
Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.
Ma, G.; Zhang, X. Y.; Zhou, G. F.; Wang, X. Hydrogen production from methanol reforming electrolysis at NiO nanosheets supported Pt nanoparticles. Chem. Eng. J. 2021, 411, 128292.
Wu, Q.; Gao, Q. P.; Sun, L. M.; Guo, H. M.; Tai, X. S.; Li, D.; Liu, L.; Ling, C. Y.; Sun, X. P. Facilitating active species by decorating CeO2 on Ni3S2 nanosheets for efficient water oxidation electrocatalysis. Chin. J. Catal. 2021, 42, 482–489.
Sun, Y.; Wang, J.; Qi, Y. F.; Li, W. J.; Wang, C. Efficient electrooxidation of 5-hydroxymethylfurfural using Co-doped Ni3S2 catalyst: Promising for H2 production under industrial-level current density. Adv. Sci. 2022, 9, 2200957.
Wang, H. N.; Guan, A. X.; Zhang, J. B.; Mi, Y. Y.; Li, S.; Yuan, T. T.; Jing, C.; Zhang, L. J.; Zhang, L. J.; Zheng, G. F. Copper-doped nickel oxyhydroxide for efficient electrocatalytic ethanol oxidation. Chin. J. Catal. 2022, 43, 1478–1484.
Wang, L. P.; Zhu, Y. J.; Wen, Y. Z.; Li, S. Y.; Cui, C. Y.; Ni, F. L.; Liu, Y. X.; Lin, H. P.; Li, Y. Y.; Peng, H. S. et al. Regulating the local charge distribution of Ni active sites for the urea oxidation reaction. Angew. Chem., Int. Ed. 2021, 60, 10577–10582.
Qin, H. Y.; Ye, Y. K.; Li, J. H.; Jia, W. Q.; Zheng, S. Y.; Cao, X. J.; Lin, G. L.; Jiao, L. F. Synergistic engineering of doping and vacancy in Ni(OH)2 to boost urea electrooxidation. Adv. Funct. Mater. 2023, 33, 2209698.
Zhao, K.; Yang, W. S.; Li, L. H.; Wang, S. S.; Wang, L.; Qi, Z. H.; Yang, Y. G.; Chen, Z.; Zhuang, J. W.; Hao, J. H. et al. Discharge induced-activation of phosphorus-doped nickel oxyhydroxide for oxygen evolution reaction. Chem. Eng. J. 2022, 435, 135049.
Zhang, L. L.; Chang, Q. W.; Chen, H. M.; Shao, M. H. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 2016, 29, 198–219.
Lei, H.; Ma, L.; Wan, Q. X.; Tan, S. Z.; Yang, B.; Wang, Z. L.; Mai, W. J.; Fan, H. J. Promoting surface reconstruction of NiFe layered double hydroxide for enhanced oxygen evolution. Adv. Energy Mater. 2022, 12, 2202522.
Zhu, X. J.; Dou, X. Y.; Dai, J.; An, X. D.; Guo, Y. Q.; Zhang, L. D.; Tao, S.; Zhao, J. Y.; Chu, W. S.; Zeng, X. C. et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells. Angew. Chem., Int. Ed. 2016, 55, 12465–12469.
Xu, X. F.; Ullah, H.; Humayun, M.; Li, L. F.; Zhang, X.; Bououdina, M.; Debecker, D. P.; Huo, K. F.; Wang, D. L.; Wang, C. D. Fluorinated Ni–O–C heterogeneous catalyst for efficient urea-assisted hydrogen production. Adv. Funct. Mater. 2023, 33, 2303986.
Yang, S. X.; Xiang, X. P.; He, Z. Y.; Zhong, W. Y.; Jia, C. H.; Gong, Z. H.; Zhang, N.; Zhao, S. J.; Chen, Y. Anionic defects engineering of NiCo2O4 for 5-hydroxymethylfurfural electrooxidation. Chem. Eng. J. 2023, 457, 141344.
Xie, H.; Feng, Y. F.; He, X. Y.; Zhu, Y.; Li, Z. Y.; Liu, H. H.; Zeng, S. Y.; Qian, Q. Z.; Zhang, G. Q. Construction of nitrogen-doped biphasic transition-metal sulfide nanosheet electrode for energy-efficient hydrogen production via urea electrolysis. Small 2023, 19, 2207425.
Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.
Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.
Qiao, S. C.; Shou, H. W.; Xu, W. J.; Cao, Y. Y.; Zhou, Y. Z.; Wang, Z. X.; Wu, X. J.; He, Q.; Song, L. Regulating and identifying the structures of PdAu alloys with splendid oxygen reduction activity for rechargeable zinc-air batteries. Energy Environ. Sci. 2023, 16, 5842–5851.
Ji, Z. J.; Song, Y. J.; Zhao, S. H.; Li, Y.; Liu, J.; Hu, W. P. Pathway manipulation via Ni, Co, and V ternary synergism to realize high efficiency for urea electrocatalytic oxidation. ACS Catal. 2022, 12, 569–579.
Wang, P. T.; Bai, X. W.; Jin, H. Y.; Gao, X. T.; Davey, K.; Zheng, Y.; Jiao, Y.; Qiao, S. Z. Directed urea-to-nitrite electrooxidation via tuning intermediate adsorption on Co, Ge Co-doped Ni sites. Adv. Funct. Mater. 2023, 33, 2300687.
Feng, C.; Lv, M. Y.; Shao, J. X.; Wu, H. Y.; Zhou, W. L.; Qi, S.; Deng, C.; Chai, X. Y.; Yang, H. P.; Hu, Q. et al. Lattice strain engineering of Ni2P enables efficient catalytic hydrazine oxidation-assisted hydrogen production. Adv. Mater. 2023, 35, 2305598.
Zhou, S. Q.; Zhao, Y. X.; Shi, R.; Wang, Y. C.; Ashok, A.; Héraly, F.; Zhang, T.; Yuan, J. Y. Vacancy-rich MXene-immobilized Ni single atoms as a high-performance electrocatalyst for the hydrazine oxidation reaction. Adv. Mater. 2022, 34, 2204388.
Yang, M.; Liu, Y. Y.; Ge, W. Y.; Liu, Z. R. Enhanced electrocatalytic activity of sulfur and tungsten Co-doped nickel hydroxide nanosheets for urea oxidation. Colloids Surf. A: Physicochem. Eng. Aspects 2023, 665, 131226.
Kim, M.; Min, K.; Ko, D.; Seong, H.; Shim, S. E.; Baeck, S. H. Regulating the electronic structure of Ni2P by one-step Co, N dual-doping for boosting electrocatalytic performance toward oxygen evolution reaction and urea oxidation reaction. J. Colloid Interface Sci. 2023, 650, 1851–1861.
Wang, W. X.; Xiong, F. Y.; Zhu, S. H.; Chen, J. H.; Xie, J.; An, Q. Y. Defect engineering in molybdenum-based electrode materials for energy storage. eScience 2022, 2, 278–294.
Guo, D. X.; Wang, S.; Xu, J.; Zheng, W. J.; Wang, D. H. Defect and interface engineering for electrochemical nitrogen reduction reaction under ambient conditions. J. Energy Chem. 2022, 65, 448–468.
Xiao, H. B.; Chi, K.; Yin, H. X.; Zhou, X. J.; Lei, P. X.; Liu, P. Z.; Fang, J. K.; Li, X. H.; Yuan, S. L.; Zhang, Z. et al. Excess activity tuned by distorted tetrahedron in CoMoO4 for oxygen evolution. Energy Environ. Mater. 2022, 7, e12495.
Zheng, Y. F.; Fu, K. X.; Yu, Z. H.; Su, Y.; Han, R.; Liu, Q. L. Oxygen vacancies in a catalyst for VOCs oxidation: Synthesis, characterization, and catalytic effects. J. Mater. Chem. A 2022, 10, 14171–14186.
Sun, K. S.; Pang, J. X.; Zheng, Y.; Xing, F. Y.; Jiang, R.; Min, J.; Ye, J. H.; Wang, L. P.; Luo, Y.; Gu, T. T. et al. Oxygen vacancies enriched MOF-derived MnO/C hybrids for high-performance aqueous zinc ion battery. J. Alloys Compd. 2022, 923, 166470.
Yu, X.; Hu, C. W.; Ji, P. X.; Ren, Y. M.; Zhao, H. Y.; Liu, G.; Xu, R.; Zhu, X. D.; Li, Z. Q.; Ma, Y. Q. et al. Optically transparent ultrathin NiCo alloy oxide film: Precise oxygen vacancy modulation and control for enhanced electrocatalysis of water oxidation. Appl. Catal. B: Environ. 2022, 310, 121301.
Gong, Z. H.; Zhong, W. Y.; He, Z. Y.; Liu, Q. Y.; Chen, H. J.; Zhou, D.; Zhang, N.; Kang, X. W.; Chen, Y. Regulating surface oxygen species on copper(I) oxides via plasma treatment for effective reduction of nitrate to ammonia. Appl. Catal. B: Environ. 2022, 305, 121021.
Rao, P.; Wu, D. X.; Wang, T. J.; Li, J.; Deng, P. L.; Chen, Q.; Shen, Y. J.; Chen, Y.; Tian, X. L. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience 2022, 2, 399–404.
Li, Z.; Zhang, Y.; Feng, Y.; Cheng, C. Q.; Qiu, K. W.; Dong, C. K.; Liu, H.; Du, X. W. Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions. Adv. Funct. Mater. 2019, 29, 1903444.
Tong, Y.; Chen, P. Z.; Zhang, M. X.; Zhou, T. P.; Zhang, L. D.; Chu, W. S.; Wu, C. Z.; Xie, Y. Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. ACS Catal. 2018, 8, 1–7.
Liu, J. B.; Tao, S. Y. Laser Promoting oxygen vacancies generation in alloy via Mo for HMF electrochemical oxidation. Adv. Sci. 2023, 10, 2302641.
Peng, L. S.; Yang, N.; Yang, Y. Q.; Wang, Q.; Xie, X. Y.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 24612–24619.
Ge, J. J.; Zheng, J. Y.; Zhang, J. W.; Jiang, S. Y.; Zhang, L. L.; Wan, H.; Wang, L. M.; Ma, W.; Zhou, Z.; Ma, R. Z. Controllable atomic defect engineering in layered Ni x Fe1− x (OH)2 nanosheets for electrochemical overall water splitting. J. Mater. Chem. A 2021, 9, 14432–14443.
Han, W. K.; Wei, J. X.; Xiao, K.; Ouyang, T.; Peng, X. W.; Zhao, S. L.; Liu, Z. Q. Activating lattice oxygen in layered lithium oxides through cation vacancies for enhanced urea electrolysis. Angew. Chem., Int. Ed. 2022, 61, e202206050.
Qi, Y. F.; Wang, K. Y.; Sun, Y.; Wang, J.; Wang, C. Engineering the electronic structure of NiFe layered double hydroxide nanosheet array by implanting cationic vacancies for efficient electrochemical conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ACS Sustainable Chem. Eng. 2022, 10, 645–654.
Zheng, J. X.; Peng, X. F.; Xu, Z.; Gong, J. B.; Wang, Z. Cationic defect engineering in spinel NiCo2O4 for enhanced electrocatalytic oxygen evolution. ACS Catal. 2022, 12, 10245–10254.
Luo, M. H.; Sun, W. P.; Xu, B. B.; Pan, H. G.; Jiang, Y. Z. Interface engineering of air electrocatalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2021, 11, 2002762.
Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Y. B.; Li, Y. Y.; Zhang, N. N.; Chen, W.; Zhou, L.; Lin, H. Z. et al. Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Sci. China Chem. 2020, 63, 980–986.
Zeng, M.; Wu, J. H.; Li, Z. Y.; Wu, H. H.; Wang, J. L.; Wang, H. L.; He, L.; Yang, X. J. Interlayer effect in NiCo layered double hydroxide for promoted electrocatalytic urea oxidation. ACS Sustainable Chem. Eng. 2019, 7, 4777–4783.
Zhou, Q. X.; Xu, C. X.; Hou, J. G.; Ma, W. Q.; Jian, T. Z.; Yan, S. S.; Liu, H. Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-Gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 2023, 15, 95.
Liu, Y.; Xing, Y. Y.; Xu, S. J.; Lu, Y. K.; Sun, S. C.; Jiang, D. L. Interfacing Co3Mo with CoMoO x for synergistically boosting electrocatalytic hydrogen and oxygen evolution reactions. Chem. Eng. J. 2022, 431, 133240.
Zhou, H. B.; Zhang, D. X.; Dong, W. X.; Zhou, C. X.; Jiang, T. Y.; Liu, Y. S.; Tian, C. G.; Liu, Y. H.; Liu, Y.; Mao, B. D. Stainless steel mesh-based CoSe/Ni3Se4 heterostructure for efficient electrocatalytic overall water splitting. Int. J. Hydrogen Energy 2023, 48, 14554–14564.
Liu, N. Y.; Liu, Y. X.; Liu, Y. L.; Li, Y. X.; Cheng, Y. Y.; Li, H. T. Modulation of photogenerated holes for enhanced photoelectrocatalytic performance. Microstructures 2023, 3, 2023001.
He, C. H.; Liu, Q. Q.; Wang, H. M.; Xia, C. F.; Li, F. M.; Guo, W.; Xia, B. Y. Regulating reversible oxygen electrocatalysis by built-in electric field of heterojunction electrocatalyst with modified d-band. Small 2023, 19, 2207474.
Tong, Z.; Liu, Y. L.; Wu, X.; Cheng, Y. Y.; Yu, J. W.; Zhang, X. Y.; Liu, N. Y.; Liu, X.; Li, H. T. Carbon quantum dots/Cu2O photocatalyst for room temperature selective oxidation of benzyl alcohol. Nanomaterials, 2024, 14, 212.
Zheng, D.; Yu, L. H.; Liu, W. X.; Dai, X. J.; Niu, X. X.; Fu, W. Q.; Shi, W. H.; Wu, F. F.; Cao, X. H. Structural advantages and enhancement strategies of heterostructure water-splitting electrocatalysts. Cell Rep. Phys. Sci. 2021, 2, 100443.
Qi, Y. B.; Zhang, Y.; Yang, L.; Zhao, Y. H.; Zhu, Y. H.; Jiang, H. L.; Li, C. Z. Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nat. Commun. 2022, 13, 4602.
Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z. Y.; El-Harairy, A.; Xiao, C. et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 2021, 60, 5984–5993.
Luo, R. P.; Li, Y. Y.; Xing, L. X.; Wang, N.; Zhong, R. Y.; Qian, Z. Y.; Du, C. Y.; Yin, G. P.; Wang, Y. C.; Du, L. A dynamic Ni(OH)2-NiOOH/NiFeP heterojunction enabling high-performance E-upgrading of hydroxymethylfurfural. Appl. Catal. B: Environ. 2022, 311, 121357.
809
Views
192
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).