AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Thermal insulating Si3N4@SiO2 nanowire aerogel with excellent mechanical performance at high-temperatures up to 1300 °C

Yeye LiuLeilei Zhang( )Caixiang XiaoHaiyang LiHejun Li
State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi’an 710072, China
Show Author Information

Graphical Abstract

The thermal insulating Si3N4@SiO2 core–shell nanowire aerogels with excellent mechanical performance at high-temperatures up to 1300 °C are prepared by freeze-drying and subsequent heat treatment method.

Abstract

Ceramic aerogels with low dielectric are attractive due to its lightweight and ultralow thermal conductivity, while it can withstand complex mechanical loads and thermal shock for the randoms/windows of aerospace. In this work, Si3N4 nanowires were assembled as basic building blocks to fabricate the nanostructure-based ultralight ceramic aerogels by freeze-drying and subsequent heat treatment method. The SiO2 shell was formed on the surface of Si3N4 nanowire core and the Si3N4/SiO2 interface was applied to improve the mechanical and thermal insulation performance. Thanks to the core–shell structure of Si3N4@SiO2 nanowire (SSN) and the ultra-high porosity, the as-obtained Si3N4@SiO2 nanowire aerogels display robust mechanical and thermal stability, the compress strength up to 27.1 kPa, and the compress strength up to 4.6 kPa even after heat treatment up to 1300 °C for 9000 s. The compress strength retention rate is 58% for SSN aerogel after oxidation for 9000 s. The SSN aerogel also features low thermal conductivity of 0.029 W·m–1·K–1 at room temperature. Furthermore, the dielectric property of SSN aerogel is low (an ultra-low real permittivity (ε′) of 1.02–1.04, the dielectric loss of 2 × 10–3). This robust material system is ideal for thermal insulation for the randoms/windows of aerospace.

Electronic Supplementary Material

Download File(s)
7008_ESM.pdf (1.6 MB)

References

[1]

Guo, J. R.; Fu, S. B.; Deng, Y. P.; Xu, X.; Laima, S.; Liu, D. Z.; Zhang, P. Y.; Zhou, J.; Zhao, H.; Yu, H. X. et al. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 2022, 606, 909–916.

[2]

Xu, X.; Zhang, Q. Q.; Hao, M. L.; Hu, Y.; Lin, Z. Y.; Peng, L. L.; Wang, T.; Ren, X. X.; Wang, C.; Zhao, Z. P. et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science 2019, 363, 723–727.

[3]

Cai, Z. X.; Su, L.; Wang, H. J.; Niu, M.; Gao, H. F.; Lu, D.; Li, M. Z. Hydrophobic SiC@C nanowire foam with broad-band and mechanically controlled electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2020, 12, 8555–8562.

[4]

Wang, H. L.; Lin, S.; Yang, S.; Yang, X. D.; Song, J. N.; Wang, D.; Wang, H. Y.; Liu, Z. L.; Li, B.; Fang, M. H. et al. High-temperature particulate matter filtration with resilient Yttria-stabilized ZrO2 nanofiber sponge. Small 2018, 14, 1800258.

[5]

Guo, P. F.; Su, L.; Peng, K.; Lu, D.; Xu, L.; Li, M. Z.; Wang, H. J. Additive manufacturing of resilient SiC nanowire aerogels. ACS Nano 2022, 16, 6625–6633.

[6]

Dou, L. Y.; Zhang, X. X.; Shan, H. R.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility. Adv. Funct. Mater. 2020, 30, 2005928.

[7]

Liu, B. W.; Cao, M.; Zhang, Y. Y.; Wang, Y. Z.; Zhao, H. B. Multifunctional protective aerogel with superelasticity over –196 to 500 °C. Nano Res. 2022, 15, 7797–7805.

[8]

Lin, X. C.; Li, S. L.; Li, W. X.; Wang, Z. H.; Zhang, J. Y.; Liu, B. W.; Fu, T.; Zhao, H. B.; Wang, Y. Z. Thermo-responsive self-ceramifiable robust aerogel with exceptional strengthening and thermal insulating performance at ultrahigh temperatures. Adv. Funct. Mater. 2023, 33, 2214913.

[9]

Xu, X.; Fu, S. B.; Guo, J. R.; Li, H.; Huang, Y.; Duan, X. F. Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Mater. Today 2021, 42, 162–177.

[10]

Dou, L. Y.; Zhang, X. X.; Cheng, X. T.; Ma, Z. M.; Wang, X. Q.; Si, Y.; Yu, J. Y.; Ding, B. Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 2019, 11, 29056–29064.

[11]

Xue, Y. M.; Dai, P. C.; Zhou, M.; Wang, X.; Pakdel, A.; Zhang, C.; Weng, Q. H.; Takei, T.; Fu, X. W.; Popov, I. Z. et al. Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures. ACS Nano 2017, 11, 558–568.

[12]

Li, G. Y.; Zhu, M. Y.; Gong, W. B.; Du, R.; Eychmüller, A.; Li, T. T.; Lv, W. B.; Zhang, X. T. Boron nitride aerogels with super-flexibility ranging from liquid nitrogen temperature to 1000 °C. Adv. Funct. Mater. 2019, 29, 1900188.

[13]

Zhang, X. X.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation. Chem. Eng. J. 2022, 433, 133628.

[14]

Yin, J.; Li, X. M.; Zhou, J. X.; Guo, W. L. Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity. Nano Lett. 2013, 13, 3232–3236.

[15]

Zhang, W.; Su, L.; Lu, D.; Peng, K.; Niu, M.; Zhuang, L.; Feng, J.; Wang, H. J. Resilient Si3N4@SiO2 nanowire aerogels for high-temperature electromagnetic wave transparency and thermal insulation. J. Adv. Ceram. 2023, 12, 2112–2122.

[16]

Li, M. Z.; Su, L.; Wang, H. J.; Wan, P. F.; Guo, P. F.; Cai, Z. X.; Gao, H. F.; Zhang, Z. J.; Lu, D. Stretchable and compressible Si3N4 nanofiber sponge with aligned microstructure for highly efficient particulate matter filtration under high-velocity airflow. Small 2021, 17, 2100556.

[17]

Lan, X. L.; Zhao, H. R.; Zhang, B. X.; Wu, L. N.; Wang, Z. J. Ultralight, compressible, and high-temperature-resistant dual-phase SiC/Si3N4 felt for efficient electromagnetic wave attenuation. Chem. Eng. J. 2021, 425, 130727.

[18]

Wang, H. L.; Zhang, X.; Wang, N.; Li, Y.; Feng, X.; Huang, Y.; Zhao, C. S.; Liu, Z. L.; Fang, M. H.; Ou, G. et al. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges. Sci. Adv. 2017, 3, e1603170.

[19]

Yang, S.; Wang, X. Q.; Dou, L. Y.; Yu, J. Y.; Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 2018, 4, eaas8925.

[20]

Zhang, X. X.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. All-ceramic and elastic aerogels with nanofibrous-granular binary synergistic structure for thermal superinsulation. ACS Nano 2022, 16, 5487–5495.

[21]

Zhang, X. X.; Wang, F.; Dou, L. Y.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300°C. ACS Nano 2020, 14, 15616–15625.

[22]

Xu, Z.; Wu, F.; Pan, K.; Liao, Y. L.; Wang, F.; Cheng, L. D.; Yu, J. Y.; Liu, Y. T.; Ding, B. Ceramic aerogels constructed from dense, non-porous ceramic nanofibers with robust and elastic properties up to 1300°C. Ceram. Int. 2024, 50, 6381–6387.

[23]

Wu, S. Q.; Chen, D. M.; Han, W. B.; Xie, Y. S.; Zhao, G. D.; Dong, S.; Tan, M. Y.; Huang, H.; Xu, S. B.; Chen, G. Q. et al. Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 2022, 446, 137093.

[24]

Yan, M. Y.; Cheng, X. D.; Gong, L. L.; Lun, Z. Y.; He, P.; Shi, L.; Liu, C. J.; Pan, Y. L. Flexible SiC nanowire/mullite fiber composite aerogel with adjustable strength based on micromechanical design. Chem. Eng. J. 2023, 466, 143089.

[25]

Donadio, D.; Galli, G. Temperature dependence of the thermal conductivity of thin silicon nanowires. Nano Lett. 2010, 10, 847–851.

[26]

Su, L.; Wang, H. J.; Niu, M.; Dai, S.; Cai, Z. X.; Yang, B. G.; Huyan, H. X.; Pan, X. Q. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv. 2020, 6, eaay6689.

[27]

Chiritescu, C.; Cahill, D. G.; Nguyen, N.; Johnson, D.; Bodapati, A.; Keblinski, P.; Zschack, P. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 2007, 315, 351–353.

[28]

Losego, M. D.; Grady, M. E.; Sottos, N. R.; Cahill, D. G.; Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 2012, 11, 502–506.

[29]

Zheng, R. X.; Cheng, Y.; Jiang, X.; Lin, T.; Chen, W.; Deng, G. F.; Miras, H. N.; Song, Y. F. Fiber templated epitaxially grown composite membranes: From thermal insulation to infrared stealth. ACS Appl. Mater. Interfaces 2022, 14, 27214–27221.

[30]

Liu, Y. Y.; Zhang, L. L.; Zhang, R. N.; Shao, S. Q.; Sun, L. N.; Wan, X. Y.; Wang, T. T. Thermal insulating and fire-retardant Si3N4 nanowire membranes resistant to high temperatures up to 1300 °C. J. Mater. Sci. Technol. 2023, 155, 82–88.

[31]

Liu, Y. Y.; Zhang, L. L.; Zhao, F.; Zhong, L.; Niu, J. Y.; Li, H. J. Surface decoration of flexible Si3N4 nanowire membrane by hydroxyapatite micron-flake with excellent thermal insulation at 1300 °C. Mater. Charact. 2024, 211, 113905.

[32]

Liu, Y. Y.; Zhang, L. L.; Nie, H. W.; Sheng, H. C.; Li, H. J. Balanced mechanical and biotribological properties of polymer composites reinforced by a 3D interlocked Si3N4 nanowire membrane. ACS Appl. Mater. Interfaces 2022, 14, 56203–56212.

[33]

Chen, Y.; Zhang, C.; Wang, N.; Jensen, M.; Li, X. F.; Zhang, X. X. Synthesis and properties of self-assembled ultralong core-shell Si3N4/SiO2 nanowires by catalyst-free technique. Ceram. Int. 2019, 45, 20040–20045.

[34]

Chen, R. F.; Duan, W. Y.; Wang, G.; Liu, B. S.; Zhao, Y. T.; Li, S. Preparation of broadband transparent Si3N4-SiO2 ceramics by digital light processing (DLP) 3D printing technology. J. Eur. Ceram. Soc. 2021, 41, 5495–5504.

[35]

Zhang, X. X.; Liu, Y. T.; Si, Y.; Yu, J. Y.; Ding, B. Flexible and tough zirconia-based nanofibrous membranes for thermal insulation. Compos. Commun. 2022, 33, 101219.

[36]

Zhang, X. H.; Ni, X. X.; He, M. Y.; Gao, Y. J.; Li, C. X.; Mo, X. L.; Sun, G.; You, B. A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel. Mater. Chem. Front. 2021, 5, 804–816.

[37]

Cai, H. F.; Jiang, Y. G.; Feng, J.; Zhang, S. Z.; Peng, F.; Xiao, Y. Y.; Li, L. J.; Feng, J. Z. Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol. Mater. Des. 2020, 191, 108640.

[38]

Luo, Y.; Yu, L. F.; Men, J.; Feng, J. Z.; Jiang, Y. G.; Li, L. J.; Qin, G. Z.; Feng, J. Ultralow thermal conductivity of single-atom doped carbon aerogel synthesized with a facile ambient-pressure-drying strategy. Carbon 2023, 213, 118167.

[39]

Su, L.; Jia, S. H.; Ren, J. Q.; Lu, X. F.; Guo, S. W.; Guo, P. F.; Cai, Z. X.; Lu, D.; Niu, M.; Zhuang, L. et al. Strong yet flexible ceramic aerogel. Nat. Commun. 2023, 14, 7057.

[40]

Su, L.; Li, M. Z.; Wang, H. J.; Niu, M.; Lu, D.; Cai, Z. X. Resilient Si3N4 nanobelt aerogel as fire-resistant and electromagnetic wave-transparent thermal insulator. ACS Appl. Mater. Interfaces 2019, 11, 15795–15803.

[41]

Guo, P. F.; Su, L.; Peng, K.; Lu, D.; Xu, L.; Li, M. Z.; Wang, H. J. Additive manufacturing of resilient SiC nanowire aerogels. ACS Nano 2022, 16, 6625–6633.

[42]

Su, L.; Wang, H. J.; Niu, M.; Fan, X. Y.; Ma, M. B.; Shi, Z. Q.; Guo, S. W. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel. ACS Nano 2018, 12, 3103–3111.

[43]

Xu, Y.; Yan, C. T.; Du, C. L.; Xu, K.; Li, Y. X.; Xu, M. J.; Bourbigot, S.; Fontaine, G.; Li, B.; Liu, L. B. High-strength, thermal-insulating, fire-safe bio-based organic lightweight aerogel based on 3D network construction of natural tubular fibers. Compos. Part B Eng. 2023, 261, 110809.

[44]

Feng, L.; Wei, P.; Ding, S. Y.; Song, Q.; Zhang, J. X.; Wang, C. H.; Guo, L. Y.; Xu, D. F.; Song, H. J. Superelastic and thermal insulating multilayer organic–inorganic hybrid aerogel built from boron nitride nanoribbons and aramid nanofibers. Compos. Sci. Technol. 2023, 244, 110277.

[45]

Zhang, C. L.; Ye, F.; Cheng, L. F.; Li, M. X.; Zhou, J.; Zhang, Q. Electromagnetic wave-transparent porous silicon nitride ceramic prepared by gel-casting combined with in- situ nitridation reaction. J. Eur. Ceram. Soc. 2021, 41, 7620–7629.

[46]

Cheng, Z. L.; Ye, F.; Liu, Y. S.; Qiao, T. L.; Li, J. P.; Qin, H. L.; Cheng, L. F.; Zhang, L. T. Mechanical and dielectric properties of porous and wave-transparent Si3N4-Si3N4 composite ceramics fabricated by 3D printing combined with chemical vapor infiltration. J. Adv. Ceram. 2019, 8, 399–407.

[47]

Feng, Y. R.; Gong, H. Y.; Zhang, Y. J.; Wang, X. L.; Che, S. W.; Zhao, Y. J.; Guo, X. Effect of BN content on the mechanical and dielectric properties of porous BNp/Si3N4 ceramics. Ceram. Int. 2016, 42, 661–665.

[48]

Chen, Z. H.; Duan, W. Y.; Zhang, D. Y.; Wang, X. Y.; Li, T.; Zhao, C. Y.; Li, Q.; Li, S.; Liu, B. S.; Wang, G. Fabrication of broadband wave-transparent Si3N4 ceramics with octet-truss lattice structure by vat photopolymerization 3D printing technology. J. Eur. Ceram. Soc. 2024, 44, 2026–2036.

Nano Research
Article number: 94907008
Cite this article:
Liu Y, Zhang L, Xiao C, et al. Thermal insulating Si3N4@SiO2 nanowire aerogel with excellent mechanical performance at high-temperatures up to 1300 °C. Nano Research, 2025, 18(1): 94907008. https://doi.org/10.26599/NR.2025.94907008
Topics:

438

Views

88

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 July 2024
Revised: 16 August 2024
Accepted: 26 August 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return