AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (18.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Study on the linear dynamic range and anti-background light interference of n-Si/n-ZnO heterojunction photodetectors enhanced by transient current

Yongle ZhangXue FengFeng YangYingfeng DuanYuwei ZhaoTuo ChenPeng WangJunmeng GuoZuliang DuGang Cheng ( )
Key Lab for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
Show Author Information

Graphical Abstract

The n-Si/n-ZnO heterojunction has a larger built-in electric field and higher transient photocurrent response at the moment of 530 nm light excitation, thus using transient current generated by photoexcitation for detection and imaging can significantly improve the detection performance and imaging quality of the device.

Abstract

The self-powered photodetectors (PDs) have gained much attention due to they do not require additional external energy and can be well applied in distributed optoelectronic detection networks. However, the small built-in electric field and rich interface states of self-powered PDs, make it a severe challenge to achieve large linear dynamic range (LDR) and high responsivity. Herein, a n-Si/n-ZnO heterojunction structure self-powered PD is constructed, fully utilizing the characteristics of transient current less affected by the excitation power and interface states, and using transient current as the detection signal significantly improves the PD’s photocurrent responsivity (R) and the LDR. Under the excitation of 365, 530, 660 and 970 nm light, the device’s maximal peak-to-peak transient current responsivity (Rtt’) values are 89.3, 341, 439 and 542 mA·W−1. The device’s corresponding LDR is 113.8, 112.5, 105.9 and 74.6 dB, which are 25.9, 29.9, 20.3 and 14.4 dB higher than steady-state current (Is), respectively. Furthermore, in the presence of background light, the device’s transient current exhibits enhanced light intensity change resolution and background light interference resistance. Finally, the 6 × 6 detector array’s transient current (It) response has a good consistency and LDR, which significantly improves the device’s imaging quality and resolution. This work provides new ideas for improving the R and LDR of self-powered PDs, and will promote the development and application of transient current responsive self-powered PDs in the fields of high-sensitivity detection and fast imaging.

Electronic Supplementary Material

Download File(s)
7007_ESM.pdf (4.3 MB)

References

[1]

Mennel, L.; Symonowicz, J.; Wachter, S.; Polyushkin, D. K.; Molina-Mendoza, A. J.; Mueller, T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020, 579, 62–66.

[2]

Zhang, W. Q.; Gao, B.; Tang, J. S.; Yao, P.; Yu, S. M.; Chang, M. F.; Yoo, H. J.; Qian, H.; Wu, H. Q. Neuro-inspired computing chips. Nat. Electron. 2020, 3, 371–382.

[3]

Zhang, Z. H.; Wang, S. Y.; Liu, C. S.; Xie, R. Z.; Hu, W. D.; Zhou, P. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 2022, 17, 27–32.

[4]

Ma, N.; Zhang, K. W.; Yang, Y. Photovoltaic-pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv. Mater. 2017, 29, 1703694.

[5]

Peng, W. B.; Wang, X. F.; Yu, R. M.; Dai, Y. J.; Zou, H. Y.; Wang, A. C.; He, Y. N.; Wang, Z. L. Enhanced performance of a self-powered organic/inorganic photodetector by pyro-phototronic and piezo-phototronic effects. Adv. Mater. 2017, 29, 1606698.

[6]

Xie, C.; Mak, C.; Tao, X. M.; Yan, F. Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater. 2017, 27, 1603886.

[7]

Jayachandran, D.; Oberoi, A.; Sebastian, A.; Choudhury, T. H.; Shankar, B.; Redwing, J. M.; Das, S. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 2020, 3, 646–655.

[8]

Wang, Y. F.; Zhu, Y.; Gu, H. M.; Wang, X. F. Enhanced performances of n-ZnO nanowires/p-Si heterojunctioned pyroelectric near-infrared photodetectors via the plasmonic effect. ACS Appl. Mater. Interfaces 2021, 13, 57750–57758.

[9]

Meng, J. P.; Li, Q.; Huang, J.; Pan, C. F.; Li, Z. Self-powered photodetector for ultralow power density UV sensing. Nano Today 2022, 43, 101399.

[10]

Wang, L.; Xue, H. Y.; Zhu, M.; Gao, Y. J.; Wang, Z. N. Graded strain-enhanced pyro-phototronic photodetector with a broad and plateau band. Nano Energy 2022, 97, 107163.

[11]

Gong, X.; Tong, M. H.; Xia, Y. J.; Cai, W. Z.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C. L.; Nilsson, B.; Heeger, A. J. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 2009, 325, 1665–1667.

[12]
Ohta, J. Smart CMOS Image Sensors and Applications; 2nd ed. CRC Press: Boca Raton, 2020.
[13]

Liao, F. Y.; Zhou, Z.; Kim, B. J.; Chen, J. W.; Wang, J. L.; Wan, T. Q.; Zhou, Y.; Hoang, A. T.; Wang, C.; Kang, J. F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 2022, 5, 84–91.

[14]

Liba, O.; Murthy, K.; Tsai, Y. T.; Brooks, T.; Xue, T. F.; Karnad, N.; He, Q. R.; Barron, J. T.; Sharlet, D.; Geiss, R. et al. Handheld mobile photography in very low light. ACM Trans. Graph. 2019, 38, 164.

[15]

Kim, M.; Lee, G. J.; Choi, C.; Kim, M. S.; Lee, M.; Liu, S. Y.; Cho, K. W.; Kim, H. M.; Cho, H.; Choi, M. K. et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat. Electron. 2020, 3, 546–553.

[16]

Rao, Z. L.; Lu, Y. T.; Li, Z. W.; Sim, K.; Ma, Z. Q.; Xiao, J. L.; Yu, C. J. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nat. Electron. 2021, 4, 513–521.

[17]

Hong, S.; Choi, S. H.; Park, J.; Yoo, H.; Oh, J. Y.; Hwang, E.; Yoon, D. H.; Kim, S. Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1− x I x )3 perovskite and MoS2 hybrid structure. ACS Nano 2020, 14, 9796–9806.

[18]

Xie, D. D.; Wei, L. B.; Xie, M.; Jiang, L. Y.; Yang, J. L.; He, J.; Jiang, J. Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor. Adv. Funct. Mater. 2021, 31, 2010655.

[19]

He, Z. H.; Shen, H. G.; Ye, D. K.; Xiang, L. Y.; Zhao, W. R.; Ding, J. M.; Zhang, F. J.; Di, C. A.; Zhu, D. B. An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron. 2021, 4, 522–529.

[20]

Dou, L. T.; Yang, Y. M.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.

[21]

Bao, C. X.; Chen, Z. L.; Fang, Y. J.; Wei, H. T.; Deng, Y. H.; Xiao, X.; Li, L. L.; Huang, J. S. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv. Mater. 2017, 29, 1703209.

[22]

van Breemen, A. J. J. M.; Ollearo, R.; Shanmugam, S.; Peeters, B.; Peters, L. C. J. M.; van de Ketterij, R. L.; Katsouras, I.; Akkerman, H. B.; Frijters, C. H.; Di Giacomo, F. et al. A thin and flexible scanner for fingerprints and documents based on metal halide perovskites. Nat. Electron. 2021, 4, 818–826.

[23]

Kim, C. O.; Kim, S.; Shin, D. H.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Joo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S. H. et al. High photoresponsivity in an all-graphene p-n vertical junction photodetector. Nat. Commun. 2014, 5, 3249.

[24]

Shang, H. M.; Gao, F.; Dai, M. J.; Hu, Y. X.; Wang, S.; Xu, B.; Wang, P.; Gao, B.; Zhang, J.; Hu, P. A. Light-induced electric field enhanced self-powered photodetector based on van der waals heterojunctions. Small Methods 2023, 7, 2200966.

[25]

Zhang, Y. W.; Shen, W.; Wu, S.; Tang, W. J.; Shu, Y. T.; Ma, K. K.; Zhang, B. T.; Zhou, P.; Wang, S. High-speed transition-metal dichalcogenides based schottky photodiodes for visible and infrared light communication. ACS Nano 2022, 16, 19187–19198.

[26]

Dai, R. M.; Liu, Y.; Wu, J. F.; Wan, P.; Zhu, X. Z.; Kan, C. X.; Jiang, M. M. Self-powered ultraviolet photodetector based on an n-ZnO:Ga microwire/p-Si heterojunction with the performance enhanced by a pyro-phototronic effect. Opt. Express 2021, 29, 30244–30258.

[27]

Panwar, V.; Nandi, S.; Majumder, M.; Misra, A. Self-powered ZnO-based pyro-phototronic photodetectors: Impact of heterointerfaces and parametric studies. J. Mater. Chem. C 2022, 10, 12487–12510.

[28]

Zhang, Y. L.; Yang, F.; Guo, Q. W.; Feng, X.; Duan, Y. F.; Guo, J. M.; Cheng, G.; Du, Z. L. The self-powered photodetector of n-Si/n-ZnO heterojunction with enhanced temperature adaptability via transient current response. J. Phys. D: Appl. Phys. 2022, 55, 504004.

[29]

Wang, Z. N.; Yu, R. M.; Wang, X. F.; Wu, W. Z.; Wang, Z. L. Ultrafast response p-Si/n-ZnO heterojunction ultraviolet detector based on pyro-phototronic effect. Adv. Mater. 2016, 28, 6880–6886.

[30]

Wang, Y.; Zhu, L. P.; Feng, Y. J.; Wang, Z. N.; Wang, Z. L. Comprehensive pyro-phototronic effect enhanced ultraviolet detector with ZnO/Ag schottky junction. Adv. Funct. Mater. 2019, 29, 1807111.

[31]

Zou, H. Y.; Dai, G. Z.; Wang, A. C.; Li, X. G.; Zhang, S. L.; Ding, W. B.; Zhang, L.; Zhang, Y.; Wang, Z. L. Alternating current photovoltaic effect. Adv. Mater. 2020, 32, 1907249.

[32]

Feng, Y. J.; Zhang, Y. L.; Wang, Y.; Wang, Z. N. Frequency response characteristics of pyroelectric effect in p-n junction UV detectors. Nano Energy 2018, 54, 429–436.

[33]

Zhang, Y. L.; Hu, M. N.; Wang, Z. N. Enhanced performances of p-si/n-ZnO self-powered photodetector by interface state modification and pyro-phototronic effect. Nano Energy 2020, 71, 104630.

[34]

Yin, B.; Zhang, H. Q.; Qiu, Y.; Luo, Y. M.; Zhao, Y.; Hu, L. Z. The light-induced pyro-phototronic effect improving a ZnO/NiO/Si heterojunction photodetector for selectively detecting ultraviolet or visible illumination. Nanoscale 2017, 9, 17199–17206.

[35]

Ouyang, B. S.; Zhang, K. W.; Yang, Y. Photocurrent polarity controlled by light wavelength in self-powered ZnO nanowires/SnS photodetector system. iScience 2018, 1, 16–23.

[36]

You, D. T.; Xu, C. X.; Zhang, W.; Zhao, J.; Qin, F. F.; Shi, Z. L. Photovoltaic-pyroelectric effect coupled broadband photodetector in self-powered ZnO/ZnTe core/shell nanorod arrays. Nano Energy 2019, 62, 310–318.

[37]

Kumar, M.; Patel, M.; Kim, J.; Lim, D. Enhanced broadband photoresponse of a self-powered photodetector based on vertically grown SnS layers via the pyro-phototronic effect. Nanoscale 2017, 9, 19201–19208.

[38]

Dong, J. Q.; Wang, Z. J.; Wang, X. F.; Wang, Z. L. Temperature dependence of the pyro-phototronic effect in self-powered p-Si/n-ZnO nanowires heterojuncted ultraviolet sensors. Nano Today 2019, 29, 100798.

[39]

Aranovich, J. A.; Golmayo, D.; Fahrenbruch, A. L.; Bube, R. H. Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis. J. Appl. Phys. 1980, 51, 4260–4268.

[40]

Sze, S. M. Citation classic—Physics of semiconductor-devices. Curr. Cont. Eng. Technol. Appl. Sci. 1982, 1, 28.

[41]

Bera, A.; Basak, D. Role of defects in the anomalous photoconductivity in ZnO nanowires. Appl. Phys. Lett. 2009, 94, 163119.

[42]
Sze, S. M.; Li, Y. M.; Ng, K. K. Physics of Semiconductor Devices; 4th ed. John Wiley & Sons: New York, 2021.
[43]

Konstantatos, G.; Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotech. 2010, 5, 391–400.

[44]

Wang, Z. N.; Yu, R. M.; Pan, C. F.; Li, Z. L.; Yang, J.; Yi, F.; Wang, Z. L. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nat. Commun. 2015, 6, 8401.

[45]

Dai, Y. J.; Wang, X. F.; Peng, W. B.; Xu, C.; Wu, C. S.; Dong, K.; Liu, R. Y.; Wang, Z. L. Self-powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro-phototronic effect: An approach for photosensing below bandgap energy. Adv. Mater. 2018, 30, 1705893.

[46]

Ma, J. K.; Chen, M. J.; Qiao, S.; Guo, S. Y.; Chang, J. L.; Fu, G. S.; Wang, S. F. A new approach for broadband photosensing based on Ag2Se/Si heterojunction tuned by pyro-phototronic effect. Nano Energy 2023, 107, 108167.

[47]

Ahmed, A. A.; Qahtan, T. F.; Hashim, M. R.; Nomaan, A. T.; Al-Hardan, N. H.; Rashid, M. Eco-friendly ultrafast self-powered p-Si/n-ZnO photodetector enhanced by photovoltaic-pyroelectric coupling effect. Ceram. Int. 2022, 48, 16142–16155.

[48]

Wang, B. Y.; Zhu, Y.; Dong, J. Q.; Jiang, J.; Wang, Q.; Li, S. T.; Wang, X. F. Self-powered, superior high gain silicon-based near-infrared photosensing for low-power light communication. Nano Energy 2020, 70, 104544.

[49]

Chen, L.; Wang, B. Y.; Dong, J. Q.; Gao, F. L.; Zheng, H. W.; He, M.; Wang, X. F. Insights into the pyro-phototronic effect in p-Si/n-ZnO nanowires heterojunction toward high-performance near-infrared photosensing. Nano Energy 2020, 78, 105260.

[50]

Silva, J. P. B.; Vieira, E. M. F.; Gwozdz, K.; Kaim, A.; Goncalves, L. M.; MacManus-Driscoll, J. L.; Hoye, R. L. Z.; Pereira, M. High-performance self-powered photodetectors achieved through the pyro-phototronic effect in Si/SnO x /ZnO heterojunctions. Nano Energy 2021, 89, 106347.

[51]

Peng, W. B.; Pan, Z. J.; Li, F. P.; Cai, Y. H.; He, Y. N. Pyro-phototronic effect enhanced ZnO nanowire-based tri-layer heterojunction for visible light sensing and communication. Nano Energy 2020, 78, 105268.

Nano Research
Article number: 94907007
Cite this article:
Zhang Y, Feng X, Yang F, et al. Study on the linear dynamic range and anti-background light interference of n-Si/n-ZnO heterojunction photodetectors enhanced by transient current. Nano Research, 2025, 18(1): 94907007. https://doi.org/10.26599/NR.2025.94907007
Topics:

390

Views

73

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 13 June 2024
Revised: 11 August 2024
Accepted: 26 August 2024
Published: 26 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return