Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Magnetic fluids are a type of novel functional material that has emerged over the past two decades, which have found applications in various aspects of production and daily life. However, the application of conventional magnetic fluids in low-temperature environments is severely limited and often unsatisfactory. To address this issue, we have developed a new magnetic fluid with excellent low-temperature resistance. Initially, bare Fe3O4 magnetic nanoparticles (FMNPs) were synthesized via co-precipitation without a protective gas. Subsequently, these particles were modified using polyethylene glycol (PEG)-4000 as a surfactant. The bare and modified FMNPs (MFMNPs) were characterized using X-ray diffraction (XRD), vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis-differential thermal gravimetric (TGA-DTG) analysis. The rheological properties, low-temperature resistance of the magnetic fluid were also evaluated. The characterization results indicate that the MFMNPs are spherical and monodisperse, with a narrow size distribution and a mean particle size of approximately 12 nm. Furthermore, the FTIR spectra and TGA-DTA results suggest that PEG-4000 is linked to the bare Fe3O4 particles via hydrogen bonding, indicating successful modification of the Fe3O4 magnetic nanoparticles using PEG. VSM measurements demonstrate that surface modification does not alter the crystal morphology or superparamagnetic of Fe3O4. However, it does reduce the saturation magnetization from 68.17 to 54.75 emu/g. Additionally, the prepared magnetic fluid exhibits shear thinning and magnetic viscosity effects. It also exhibits excellent low-temperature resistance, maintaining good fluidity without freezing even at –60 °C. In summary, these results collectively indicate that the new low-temperature resistant magnetic fluid developed in this study is stable and has broad application prospects.
Torres-Díaz, I.; Rinaldi, C. Recent progress in ferrofluids research: Novel applications of magnetically controllable and tunable fluids. Soft Matter 2014, 10, 8584–8602.
Raj, K.; Moskowitz, B.; Casciari, R. Advances in ferrofluid technology. J. Magn. Magn. Mater. 1995, 149, 174–180.
Imran, M.; Ansari, A. R.; Shaik, A. H.; Abdulaziz; Hussain, S.; Khan, A.; Chandan, M. R. Ferrofluid synthesis using oleic acid coated Fe3O4 nanoparticles dispersed in mineral oil for heat transfer applications. Mater. Res. Express 2018, 5, 036108.
Varshney, S.; Ohlan, A.; Jain, V. K.; Dutta, V. P.; Dhawan, S. K. Synthesis of ferrofluid based nanoarchitectured polypyrrole composites and its application for electromagnetic shielding. Mater. Chem. Phys. 2014, 143, 806–813.
Mishra, M.; Singh, A. P.; Singh, B. P.; Singh, V. N.; Dhawan, S. K. Conducting ferrofluid: A high-performance microwave shielding material. J. Mater. Chem. A 2014, 2, 13159–13168.
Szczech, M.; Horak, W. Numerical simulation and experimental validation of the critical pressure value in ferromagnetic fluid seals. IEEE Trans. Magn. 2017, 53, 4600605.
Marinică, O.; Susan-Resiga, D.; Bălănean, F.; Vizman, D.; Socoliuc, V.; Vékás, L. Nano-micro composite magnetic fluids: Magnetic and magnetorheological evaluation for rotating seal and vibration damper applications. J. Magn. Magn. Mater. 2016, 406, 134–143.
Kopyl, S.; Bystrov, V.; Bdikin, I.; Maiorov, M.; Sousa, A. C. M. Filling carbon nanotubes with magnetic particles. J. Mater. Chem. C 2013, 1, 2860–2866.
Sheikholeslami, M.; Ganji, D. D. Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 2014, 75, 400–410.
Kandelousi, M. S. Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. Eur. Phys. J. Plus 2014, 129, 248.
Lajvardi, M.; Moghimi-Rad, J.; Hadi, I.; Gavili, A.; Isfahani, T. D.; Zabihi, F.; Sabbaghzadeh, J. Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect. J. Magn. Magn. Mater. 2010, 322, 3508–3513.
Martinez, L.; Cecelja, F.; Rakowski, R. A novel magneto-optic ferrofluid material for sensor applications. Sens. Actuators A: Phys. 2005, 123–124, 438–443.
Miao, Y. P.; Zhang, K. L.; Liu, B.; Lin, W.; Zhang, H.; Lu, Y.; Yao, J. Q. Ferrofluid-infiltrated microstructured optical fiber long-period grating. IEEE Photonics Technol. Lett. 2013, 25, 306–309.
Zhao, Y.; Wu, D.; Lv, R. Q. Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid. IEEE Photonics Technol. Lett. 2015, 27, 26–29.
Zarandi, A. A.; Alvani, A. A. S.; Salimi, R.; Sameie, H.; Moosakhani, S.; Poelman, D.; Rosei, F. Self-organization of an optomagnetic CoFe2O4-ZnS nanocomposite: Preparation and characterization. J. Mater. Chem. C 2015, 3, 3935–3945.
Kim, E. H.; Lee, H. S.; Kwak, B. K.; Kim, B. K. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 2005, 289, 328–330.
Zhang, L. Y.; Gu, H. C.; Wang, X. M. Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. J. Magn. Magn. Mater. 2007, 311, 228–233.
Ganguly, R.; Gaind, A. P.; Sen, S.; Puri, I. K. Analyzing ferrofluid transport for magnetic drug targeting. J. Magn. Magn. Mater. 2005, 289, 331–334.
Metelkina, O. N.; Lodge, R. W.; Rudakovskaya, P. G.; Gerasimov, V. M.; Lucas, C. H.; Grebennikov, I. S.; Shchetinin, I. V.; Savchenko, A. G.; Pavlovskaya, G. E.; Rance, G. A. et al. Nanoscale engineering of hybrid magnetite-carbon nanofibre materials for magnetic resonance imaging contrast agents. J. Mater. Chem. C 2017, 5, 2167–2174.
Odenbach, S. Fluid mechanics aspects of magnetic drug targeting. Biomed. Tech. 2015, 60, 477–483.
Hensley, D.; Tay, Z. W.; Dhavalikar, R.; Zheng, B.; Goodwill, P.; Rinaldi, C.; Conolly, S. Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Phys. Med. Biol. 2017, 62, 3483–3500.
Hedayatnasab, Z.; Abnisa, F.; Daud, W. M. A. W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Des. 2017, 123, 174–196.
Xiang, P. J.; Yan, L.; Guo, Y. M.; He, X. H.; Gerada, C.; Chen, I. M. A concentrated-flux-type PM machine with irregular magnets and iron poles. IEEE/ASME Trans. Mechatron. 2024, 29, 691–702.
Xiang, P. J.; Yan, L.; Xiao, H. Y.; He, X. H.; Du, N. N. Development of a novel radial-flux machine with enhanced torque profile employing quasi-cylindrical PM pattern. IEEE Trans. Energy Convers. 2023, 38, 2772–2783.
Cui, H. C.; Li, D. C. Fabrication and properties research on a novel perfluoropolyether based ferrofluid. J. Magn. Magn. Mater. 2019, 473, 341–347.
Cui, H. C.; Li, D. C. Preparation and property research of perfluoropolyether oil-based ferrofluid. J. Supercond. Nov. Magn. 2018, 31, 3607–3624.
Cui, H. C.; Li, D. C.; Zhang, Z. L. Preparation and characterization of Fe3O4 magnetic nanoparticles modified by perfluoropolyether carboxylic acid surfactant. Mater. Lett. 2015, 143, 38–40.
Arora, M.; Singh, R.; Panda, M. K. Effects of magnetic-field-dependent viscosity at onset of convection in magnetic nanofluids. J. Eng. Math. 2016, 101, 201–217.
Singh, J.; Bajaj, R. Dean instability in ferrofluids. Meccanica 2016, 51, 835–847.
Luo, J. H.; Zhang, G.; Xie, N. J.; Wang, T. X.; Gu, Y. R.; Gong, S. H.; Wang, C. L. A magnetic sensor based on a hybrid long-period fiber grating and a magnetic fluid. IEEE Photonics Technol. Lett. 2015, 27, 998–1001.
Fosa, G.; Bădescu, R.; Călugăru, G.; Bădescu, V. Measuring the transmittivity of light: A tool for testing the quality of magnetic liquids. Opt. Mater. 2006, 28, 461–465.
Lin, J. F.; Wang, C. H.; Lee, M. Z. Linear birefringence and dichroism measurement in oil-based Fe3O4 magnetic nanoparticles. J. Magn. Magn. Mater. 2013, 332, 192–198.
Zhang, L.; Huang, Z.; Shao, H. P.; Li, Y.; Zheng, H. Effects of γ-Fe2O3 on γ-Fe2O3/Fe3O4 composite magnetic fluid by low-temperature low-vacuum oxidation method. Mater. Des. 2016, 105, 234–239.
Guo, T. X.; Bian, X. F.; Yang, C. C. A new method to prepare water based Fe3O4 ferrofluid with high stabilization. Physica A: Stat. Mech. Appl. 2015, 438, 560–567.
Berger, P.; Adelman, N. B.; Beckman, K. J.; Campbell, D. J.; Ellis, A. B.; Lisensky, G. C. Preparation and properties of an aqueous ferrofluid. J. Chem. Educ. 1999, 76, 943.
Li, J.; Liu, X. D.; Lin, Y. Q.; Bai, L.; Li, Q.; Chen, X. M.; Wang, A. R. Field modulation of light transmission through ferrofluid film. Appl. Phys. Lett. 2007, 91, 253108.
Răcuciu, M.; Creangă, D.; Călugăru, G. Synthesis and rheological properties of an aqueous ferrofluid. J. Optoelectron. Adv. Mater. 2005, 7, 2859–2864.
Arantes, F. R.; Odenbach, S. The magnetoviscous effect of micellar solutions doped with water based ferrofluids. J. Magn. Magn. Mater. 2015, 390, 91–95.
Liu, H. Y.; Yan, Z. Q.; Chen, F. The perfluoropolyether oil based ferrofluid and its sealing-related properties. J. Magn. Mater. Devices 2020, 51, 50–54.
Kharat, P. B.; Chavan, A. R.; Humbe, A. V.; Jadhav, K. M. Evaluation of thermoacoustics parameters of CoFe2O4-ethylene glycol nanofluid using ultrasonic velocity technique. J. Mater. Sci.: Mater. Electron. 2019, 30, 1175–1186.
Goya, G. F.; Berquó, T. S.; Fonseca, F. C.; Morales, M. P. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 2003, 94, 3520–3528.
Yamaura, M.; Camilo, R. L.; Sampaio, L. C.; Macêdo, M. A.; Nakamura, M.; Toma, H. E. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 2004, 279, 210–217.
Meng, J. H.; Yang, G. Q.; Yan, L. M.; Wang, X. Y. Synthesis and characterization of magnetic nanometer pigment Fe3O4. Dyes Pigm. 2005, 66, 109–113.
Jing, X. W.; Liu, Y. Q.; Xu, Y.; Kang, Z. Q.; Dai, S. S. A drag reducer: It’s interaction with water, synthesis and performance evaluation. Drill. Fluid Completion Fluid 2021, 38, 127–132.
Zhang, L. N.; Li, D. H.; Yao, W. S.; Yang, R. J. Molecular dynamics simulation of interaction between GAP grafted hydantoin and solid oxidizers in for GAP propellant. J. Propul. Technol. 2010, 31, 587–592.
Jiang, H.; Yue, H.; Liu, Q. Molecular dynamics simulation of mechanical properties and surface interaction for NR/BR blends. China Plast. 2012, 26, 64–68.
Wang, Z. L.; Yan, X. L.; Huang, X. Y.; Li, Y. Q.; Gao, R. Y.; Fu, Z. Y. Molecular dynamics simulation of the effect of CNT-COOH content on the mechanical properties of PUR matrix composites. Eng. Plast. Appl. 2024, 52, 61–68.
Amani, M.; Amjad-Iranagh, S.; Golzar, K.; Sadeghi, G. M. M.; Modarress, H. Study of nanostructure characterizations and gas separation properties of poly(urethane-urea) s membranes by molecular dynamics simulation. J. Membr. Sci. 2014, 462, 28–41.
Cheng, Y. H.; Li, D. C.; Dai, R. K. Experimental analysis of starting torque of perfluoro polyethers-based magnetic fluid seal. J. Harbin Eng. Univ. 2017, 38, 1316–1321.
Li, L.; Li, D. C.; Wang, L.; Liang, Z. Q.; Zhang, Z. L. Stable silicone oil based ferrofluids with well low-temperature fluidity applied to magnetic fluid seal. J. Magn. Magn. Mater. 2023, 584, 171077.
Bing, H.; Ma, W. Laboratory investigation of the freezing point of saline soil. Cold Reg. Sci. Technol. 2011, 67, 79–88.
Zhang, M. Y.; Zhang, X. Y.; Lu, J. G.; Pei, W. S.; Wang, C. Analysis of volumetric unfrozen water contents in freezing soils. Exp. Heat Transfer 2019, 32, 426–438.
Liu, Z. C. Freezing point of wet soil and its measurement. J. China Univ. Min. Technol. 1986, 3, 24–31.
He, P. The characteristic of soil electrical resistance in the process of freezing and its application. J. Glaciol. Geocryol. 1990, 12, 365–370.
Kozlowski, T. Some factors affecting supercooling and the equilibrium freezing point in soil-water systems. Cold Reg. Sci. Technol. 2009, 59, 25–33.
Ma, T. T.; Wei, C. F.; Xia, X. L.; Chen, P. Experimental study of effect of NaCl solution on soil freezing characteristic. Rock Soil Mech. 2017, 38, 1919–1925.
Lu, J. G.; Zhang, M. Y.; Zhang, X. Y.; Pei, W. S.; Bi, J. Experimental study on the freezing-thawing deformation of a silty clay. Cold Reg. Sci. Technol. 2018, 151, 19–27.
Liu, Y. Q. Logical analysis of deduction of cryoscopic formula. J. Weinan Teach. Coll. 2001, 16, 22–24.
291
Views
44
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).