Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The integrated circuits based on carrier charge have neared their physical limits, which are constrained by the von Neumann architecture and incapable of meeting the demands for information storage, processing, and transmission from the rapid advancements in mass data and artificial intelligence. Recently discovered two-dimensional magnets, with their strengths in multi-field manipulation and high-density heterogeneous integration, have presented significant opportunities for the development of novel devices such as compute-in-memory. However, generating stable magnetic order in two-dimensional systems at room temperature is still difficult. Here, we have devised a liquid-phase precursor-assisted chemical vapor deposition methodology for the synthesis of vanadium-doped MoS2 monolayers. Magnetic measurements showed an augmentation of magnetic signals concurrent with an increase in growth temperature and doping concentration. Field-effect transistor assessments using the synthesized V-doped MoS2 monolayer as the conducting channel indicated a transition from n-type semiconducting to p-type at a doping concentration of around 6.8%, further corroborated by theoretical computations. Our study not only presents a novel synthetic approach toward the production of two-dimensional magnetic materials but also elucidates the potential of doping procedures for modulating electrical characteristics.
Li, L. J.; Zhang, J.; Myeong, G.; Shin, W.; Lim, H.; Kim, B.; Kim, S.; Jin, T.; Cavill, S.; Kim, B. S. et al. Gate-tunable reversible Rashba-Edelstein effect in a few-layer graphene/2H-TaS2 heterostructure at room temperature. ACS Nano 2020, 14, 5251–5259.
Ghising, P.; Biswas, C.; Lee, Y. H. Graphene spin valves for spin logic devices. Adv. Mater. 2023, 35, 2209137.
Matsuoka, H.; Barnes, S. E.; Ieda, J. I.; Maekawa, S.; Bahramy, M. S.; Saika, B. K.; Takeda, Y.; Wadati, H.; Wang, Y.; Yoshida, S. et al. Spin-orbit-induced ising ferromagnetism at a van der Waals interface. Nano Lett. 2021, 21, 1807–1814.
Mogi, M.; Yasuda, K.; Fujimura, R.; Yoshimi, R.; Ogawa, N.; Tsukazaki, A.; Kawamura, M.; Takahashi, K. S.; Kawasaki, M.; Tokura, Y. Current-induced switching of proximity-induced ferromagnetic surface states in a topological insulator. Nat. Commun. 2021, 12, 1404.
Ou, Y. X.; Yanez, W.; Xiao, R.; Stanley, M.; Ghosh, S.; Zheng, B. Y.; Jiang, W.; Huang, Y. S.; Pillsbury, T.; Richardella, A. et al. ZrTe2/CrTe2: An epitaxial van der Waals platform for spintronics. Nat. Commun. 2022, 13, 2972.
Zhu, W. X.; Song, C.; Han, L.; Bai, H.; Wang, Q.; Yin, S. Q.; Huang, L.; Chen, T. J.; Pan, F. Interface-enhanced ferromagnetism with long-distance effect in van der Waals semiconductor. Adv. Funct. Mater. 2022, 32, 2108953.
Chen, C.; Chen, X. D.; Wu, C. W.; Wang, X.; Ping, Y.; Wei, X.; Zhou, X.; Lu, J. B.; Zhu, L. J.; Zhou, J. D. et al. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater. 2022, 34, 2107512.
Lee, K.; Dismukes, A. H.; Telford, E. J.; Wiscons, R. A.; Wang, J.; Xu, X. D.; Nuckolls, C.; Dean, C. R.; Roy, X.; Zhu, X. Y. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 2021, 21, 3511–3517.
Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.
Xie, Y.; Zhang, B.; Wang, S. X.; Wang, D.; Wang, A. Z.; Wang, Z. Y.; Yu, H. H.; Zhang, H. J.; Chen, Y. X.; Zhao, M. W. et al. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717 nm. Adv. Mater. 2017, 29, 1605972.
Achouri, M. M.; Tab, A.; Abderrahmane, A.; Lee, D. J.; Oh, J. M.; Kim, N. H.; Ko, P. J. Thickness dependence of optoelectronic properties of molybdenum diselenide-based nanodevices. J. Electron. Mater. 2019, 48, 7025–7030.
Jung, P. G.; Oh, J. M.; Kim, N. H.; Abderrahmane, A.; Ko, P. J. Optoelectronic properties of two-dimensional molybdenum diselenide dual-gated MISFET-based photodetector. Optik 2020, 224, 165427.
Kim, B. H.; Yoon, H.; Kwon, S. H.; Kim, D. W.; Yoon, Y. J. Direct WS2 photodetector fabrication on a flexible substrate. Vacuum 2021, 184, 109950.
Dankert, A.; Pashaei, P.; Kamalakar, M. V.; Gaur, A. P. S.; Sahoo, S.; Rungger, I.; Narayan, A.; Dolui, K.; Hoque, M. A.; Patel, R. S. et al. Spin-polarized tunneling through chemical vapor deposited multilayer molybdenum disulfide. ACS Nano 2017, 11, 6389–6395.
Zatko, V.; Galbiati, M.; Dubois, S. M. M.; Och, M.; Palczynski, P.; Mattevi, C.; Brus, P.; Bezencenet, O.; Martin, M. B.; Servet, B. et al. Band-structure spin-filtering in vertical spin valves based on chemical vapor deposited WS2. ACS Nano 2019, 13, 14468–14476.
Yan, Z.; Zhang, R. Q.; Dong, X. L.; Qi, S. F.; Xu, X. H. Significant tunneling magnetoresistance and excellent spin filtering effect in CrI3-based van der Waals magnetic tunnel junctions. Phys. Chem. Chem. Phys. 2020, 22, 14773–14780.
Tongay, S.; Varnoosfaderani, S. S.; Appleton, B. R.; Wu, J. Q.; Hebard, A. F. Magnetic properties of MoS2: Existence of ferromagnetism. Appl. Phys. Lett. 2012, 101, 123105.
Zhang, M. D.; Li, Q.; Cheng, W.; Gao, Y.; Liao, B.; Ying, M. J. Robust room-temperature ferromagnetism induced by defect engineering in monolayer MoS2. Appl. Surf. Sci. 2023, 608, 155220.
Li, Y.; Cheng, X.; Zhao, Y. B.; Liu, M. Y.; Li, F.; Huang, C. X.; Dai, L.; Wan, Y.; Kan, E. J. Room-temperature ferromagnetism in layered Mn-substituted MoS2. J. Phys. Chem. C 2023, 127, 12648–12654.
Fu, S. C.; Kang, K.; Shayan, K.; Yoshimura, A.; Dadras, S.; Wang, X. T.; Zhang, L. H.; Chen, S. W.; Liu, N.; Jindal, A. et al. Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nat. Commun. 2020, 11, 2034.
Ding, X.; Liu, T.; Ahmed, S.; Bao, N. N.; Ding, J.; Yi, J. B. Enhanced ferromagnetism in WS2 via defect engineering. J. Alloys Compd. 2019, 772, 740–744.
Zhou, Y. G.; Yang, P.; Zu, H. Y.; Gao, F.; Zu, X. T. Electronic structures and magnetic properties of MoS2 nanostructures: Atomic defects, nanoholes, nanodots and antidots. Phys. Chem. Chem. Phys. 2013, 15, 10385–10394.
Xiang, Z. C.; Zhang, Z.; Xu, X. J.; Zhang, Q.; Wang, Q. B.; Yuan, C. W. Room-temperature ferromagnetism in Co doped MoS2 sheets. Phys. Chem. Chem. Phys. 2015, 17, 15822–15828.
Fang, J. Z.; Song, H. D.; Li, B.; Zhou, Z. Q.; Yang, J. H.; Lin, B. C.; Liao, Z. M.; Wei, Z. M. Large unsaturated magnetoresistance of 2D magnetic semiconductor Fe–SnS2 homojunction. J. Semicond. 2022, 43, 092501.
Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.
Cui, F. F.; Wang, C.; Li, X. B.; Wang, G.; Liu, K. Q.; Yang, Z.; Feng, Q. L.; Liang, X.; Zhang, Z. Y.; Liu, S. Z. et al. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater. 2016, 28, 5019–5024.
Hossain, M.; Wu, J. X.; Wen, W.; Liu, H. N.; Wang, X. S.; Xie, L. M. Chemical vapor deposition of 2D vanadium disulfide and diselenide and Raman characterization of the phase transitions. Adv. Mater. Interfaces 2018, 5, 1800528.
Zhu, X. Y.; Zhao, W.; Song, Y. Z.; Li, Q. C.; Ding, F.; Sun, J. Y.; Zhang, L.; Liu, Z. F. In situ assembly of 2D conductive vanadium disulfide with graphene as a high-sulfur-loading host for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800201.
Hossain, M.; Qin, B.; Sen, S. K. Chemical synthesis and substrate temperature effect on morphology of 2D vanadium disulfide. Cryst. Res. Technol. 2021, 56, 2000184.
Ding, Y. L.; Wen, Y. R.; Wu, C.; van Aken, P. A.; Maier, J.; Yu, Y. 3D V6O13 nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. Nano Lett. 2015, 15, 1388–1394.
Cheng, Z. B.; Xiao, Z. B.; Pan, H.; Wang, S. Q.; Wang, R. H. Elastic sandwich-type rGO–VS2/S composites with high tap density: Structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density. Adv. Energy Mater. 2018, 8, 1702337.
Liu, Y. Y.; Xu, L.; Guo, X. T.; Lv, T. T.; Pang, H. Vanadium sulfide based materials: Synthesis, energy storage and conversion. J. Mater. Chem. A 2020, 8, 20781–20802.
Alov, N.; Kutsko, D.; Spirovová, I.; Bastl, Z. XPS study of vanadium surface oxidation by oxygen ion bombardment. Surf. Sci. 2006, 600, 1628–1631.
Westover, R. D.; Ditto, J.; Falmbigl, M.; Hay, Z. L.; Johnson, D. C. Synthesis and characterization of quaternary monolayer thick MoSe2/SnSe/NbSe2/SnSe heterojunction superlattices. Chem. Mater. 2015, 27, 6411–6417.
Ding, Y. Q.; Guo, X. Z.; Du, B. S.; Hu, X. F.; Yang, X.; He, Y.; Zhou, Y.; Zang, Z. G. Low-operating temperature ammonia sensor based on Cu2O nanoparticles decorated with p-type MoS2 nanosheets. J. Mater. Chem. C 2021, 9, 4838–4846.
Hailemariam, S. M.; Enna, A. E. First principles investigation of structural, electronic, and room temperature ferromagnetism in V doped hexagonal pristine graphene. AIP Adv. 2021, 11, 025217.
Mekonnen, S.; Singh, P. Electronic structure and nearly room-temperature ferromagnetism in V-doped monolayer and bilayer MoS2. Int. J. Mod. Phys. B 2018, 32, 1850231.
Sun, Y. B.; Zhou, Y.; Li, H. C.; Wang, C.; Zhang, X.; Ma, Q.; Cheng, Y. C.; Qian, J. S.; Pan, B. C. Confinement of Fe atoms between MoS2 interlayers drives phase transition for improved reactivity in Fenton-like reactions. Nano Res. 2024, 17, 1132–1139.
Lan, M.; Xiang, G.; Zhang, X. Electronic structures and magnetic stabilities of 2D Mn-doped GaAs nanosheets: The role of long-range exchange interactions and doping strategies. J. Appl. Phys. 2014, 116, 083912.
Zhang, Y.; Chen, S. Z.; Xie, Z. X.; Yu, X.; Deng, Y. X.; Ning, F.; Xu, L. Surface dangling bonds dependent magnetic properties in Mn-doped GaAs nanowires. Phys. Lett. A 2020, 384, 126815.
717
Views
169
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).