Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Effective mild-temperature photothermal therapy (MTPTT) requires photothermal agents with high photothermal conversion efficiency (PCE) and balanced fluorescence quantum yield to enable efficient tumor treatment while minimizing damage to surrounding healthy tissues. In this study, we designed donor–acceptor–donor structured dyes, 4,4’-((6,7-di(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline-4,9-diyl)bis(thiophene-5,2-diyl))bis(N,N-bis(4-methoxyphenyl)aniline) (IT-STPA) and 4,4’-((6,7-di(furan-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline-4,9-diyl)bis(thiophene-5,2-diyl))bis(N,N-bis(4-methoxyphenyl)aniline) (IT-OTPA), featuring furan-modified thiadiazolo-quinoxaline for near-infrared–II (NIR-II) fluorescence imaging and enhanced PCE. The furan and thiophene modifications promoted aggregation-induced emission, resulting in strong fluorescence emission (1 000–1 400 nm) while maintaining a high PCE of 48.5%. IT-OTPA was encapsulated into nanoparticles for improved aqueous dispersion and combined with the HSP70 inhibitor apoptozole (APZ) to form OTAPZ nanoparticles. The efficacy of this combination was evaluated both in vitro and in vivo, showing efficient tumor targeting and effective MTPTT under NIR laser irradiation. This study presents a promising approach for enhancing MTPTT through balanced photothermal and fluorescence properties, offering new possibilities for cancer treatment.
Y.J. Liu, P. Bhattarai, Z.F. Dai, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Reviews, 2019, 48(7): 2053−2108. https://doi.org/10.1039/C8CS00618K
Q.L. Ma, X. Sun, W.L. Wang, et al. Diketopyrrolopyrrole-derived organic small molecular dyes for tumor phototheranostics. Chinese Chemical Letters, 2022, 33(4): 1681−1692. https://doi.org/10.1016/j.cclet.2021.10.054
P.A. Schornack, R.J. Gillies. Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia, 2003, 5(2): 135−145. https://doi.org/10.1016/S1476-5586(03)80005-2
H.S. Jung, P. Verwilst, A. Sharma, et al. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chemical Society Reviews, 2018, 47(7): 2280−2297. https://doi.org/10.1039/C7CS00522A
H.T. Chen, P.P. Bao, Y.H. Lv, et al. Enhancing NIR-II imaging and photothermal therapy for improved oral cancer theranostics by combining TICT and aggregation-induced emission. ACS Applied Materials & Interfaces, 2023, 15(49): 56895−56908. https://doi.org/10.1021/acsami.3c14905
M. Wang, D.Y. Yan, M. Wang, et al. A versatile 980 nm absorbing aggregation-induced emission luminogen for NIR-II imaging-guided synergistic photo-immunotherapy against advanced pancreatic cancer. Advanced Functional Materials, 2022, 32(36): 2205371. https://doi.org/10.1002/adfm.202205371
H.C. Shen, F.Y. Sun, X.Y. Zhu, et al. Rational design of NIR-II AIEgens with ultrahigh quantum yields for photo- and chemiluminescence imaging. Journal of the American Chemical Society, 2022, 144(33): 15391−15402. https://doi.org/10.1021/jacs.2c07443
J.W. Song, X.Y. Kang, L. Wang, et al. Near-infrared-II photoacoustic imaging and photo-triggered synergistic treatment of thrombosis via fibrin-specific homopolymer nanoparticles. Nature Communications, 2023, 14: 6881. https://doi.org/10.1038/s41467-023-42691-8
B. Li, M. Zhao, W. Lai, et al. Activatable NIR-II photothermal lipid nanoparticles for improved messenger RNA delivery. Angewandte Chemie International Edition, 2023, 62(25): e202302676. https://doi.org/10.1002/anie.202302676
G.S. Hong, A.L. Antaris, H.J. Dai. Near-infrared fluorophores for biomedical imaging. Nature Biomedical Engineering, 2017, 1: 0010. https://doi.org/10.1038/s41551-016-0010
C.F. You, Y.Q. Zhu, J. Zhu, et al. Strength in numbers: A giant NIR-II AIEgen with one-for-all phototheranostic features for exceptional orthotopic bladder cancer treatment. Angewandte Chemie International Edition, 2025, 64(6): e202417865. https://doi.org/10.1002/anie.202417865
Z. Zhao, H.K. Zhang, J.W.Y. Lam, et al. Aggregation-induced emission: new vistas at the aggregate leve. Angewandte Chemie International Edition, 2020, 59(25): 9888−9907. https://doi.org/10.1002/anie.201916729
Q.Q. Li, Z. Li. Miracles of molecular uniting. Science China Materials, 2020, 63(2): 177−184. https://doi.org/10.1007/s40843-019-1172-2
N. Jiang, T.X. Shen, J.Z. Sun, et al. Aggregation-induced emission: Right there shining. Science China Materials, 2019, 62(9): 1227−1235. https://doi.org/10.1007/s40843-019-9443-8
S.D. Xu, Y.K. Duan, B. Liu. Precise molecular design for high-performance luminogens with aggregation-induced emission. Advanced Materials, 2020, 32(1): e1903530. https://doi.org/10.1002/adma.201903530
S. Liu, Y. Li, J. Zhang, et al. A two-in-one Janus NIR-II AIEgen with balanced absorption and emission for image-guided precision surgery. Materials Today Bio, 2021, 10: 100087. https://doi.org/10.1016/j.mtbio.2020.100087
C. Wang, F. Wang, W.T. Zou, et al. Donor-acceptor-donor small molecules for fluorescence/photoacoustic imaging and integrated photothermal therapy. Acta Biomaterialia, 2023, 164: 588−603. https://doi.org/10.1016/j.actbio.2023.04.024
P.P. Xiao, Y. Sun, M.K. Liang, et al. A fluorophore with dithienopyrrole donor for beyond 1300 nm NIR-II fluorescence/photoacoustic dual-model imaging and photothermal therapy. Materials Today Nano, 2023, 24: 100404. https://doi.org/10.1016/j.mtnano.2023.100404
J. Li, R.N. Wang, Y. Sun, et al. NIR-II fluorophore with dithienylethene as an electron donor for fluorescence/photoacoustic dual-model imaging and photothermal therapy. ACS Applied Materials & Interfaces, 2021, 13(46): 54830−54839. https://doi.org/10.1021/acsami.1c17813
G.D. Chai, J.Q. Zhang, M. Pan, et al. Deciphering the role of chalcogen-containing heterocycles in nonfullerene acceptors for organic solar cells. ACS Energy Letters, 2020, 5(11): 3415. https://doi.org/10.1021/acsenergylett.0c01688
B. Briou, B. Améduri, B. Boutevin. Trends in the Diels–Alder reaction in polymer chemistry. Chemical Society Reviews, 2021, 50(19): 11055−11097. https://doi.org/10.1039/D0CS01382J
R.C. Cioc, M. Crockatt, J.C. van der Waal, et al. The interplay between kinetics and thermodynamics in furan Diels-alder chemistry for sustainable chemicals production. Angewandte Chemie International Edition, 2022, 61(17): e202114720. https://doi.org/10.1002/anie.202114720
Z.L. Cao, M.Y. Wang, H.M. Gao, et al. Porous organic polymers via Diels-alder reaction for the removal of Cr(VI) from aqueous solutions. ACS Macro Letters, 2022, 11(4): 447−451. https://doi.org/10.1021/acsmacrolett.2c00052
Y.X. Xu, C.C. Chueh, H.L. Yip, et al. Improved charge transport and absorption coefficient in indacenodithieno [3, 2-b] thiophene-based ladder-type polymer leading to highly efficient polymer solar cells. Advanced Materials, 2012, 24(47): 6356−6361. https://doi.org/10.1002/adma.201203246
S.L. Li, X.Y. Wang, R. Hu, et al. Near-infrared (NIR)-absorbing conjugated polymer dots as highly effective photothermal materials for in vivo cancer therapy. Chemistry of Materials, 2016, 28(23): 8669−8675. https://doi.org/10.1021/acs.chemmater.6b03738
X.G. Guo, N.J. Zhou, S.J. Lou, et al. Bithiopheneimide-dithienosilole/dithienogermole copolymers for efficient solar cells: Information from structure-property-device performance correlations and comparison to thieno [3, 4-c] pyrrole-4, 6-dione analogues. Journal of the American Chemical Society, 2012, 134(44): 18427−18439. https://doi.org/10.1021/ja3081583
X.H. Gao, Y.Y. Cui, R.M. Levenson, et al. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 2004, 22(8): 969−976. https://doi.org/10.1038/nbt994
L. Cheng, W.W. He, H. Gong, et al. PEGylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly-effective photothermal agent for in vivo cancer therapy. Advanced Functional Materials, 2013, 23(47): 5893−5902. https://doi.org/10.1002/adfm.201301045
B.W. Yang, Y. Chen, J.L. Shi. Tumor-specific chemotherapy by nanomedicine-enabled differential stress sensitization. Angewandte Chemie International Edition, 2020, 59(24): 9693−9701. https://doi.org/10.1002/anie.202002306
Q. Cheng, T.W. Li, Y.L. Tian, et al. NIR-II fluorescence imaging-guided photothermal therapy with amphiphilic polypeptide nanoparticles encapsulating organic NIR-II dye. ACS Applied Bio Materials, 2020, 3(12): 8953−8961. https://doi.org/10.1021/acsabm.0c01218
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.