AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Donor–Acceptor–Donor Structured Dyes with Balanced Photothermal Conversion Efficiency and Fluorescence Quantum Yield for Near-Infrared–II Mild-Temperature Photothermal Therapy

Xuan Sun1,§Zuyuan Zhang1,§Chunbai Xiang3,§Tianhe Qiao1Xin Wang1( )Gongcheng Ma4( )Dan Ding2( )
The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, and college of Life Sciences, Nankai University, Tianjin 300350, China
Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University Chengdu 610064, China
School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Effective mild-temperature photothermal therapy (MTPTT) requires photothermal agents with high photothermal conversion efficiency (PCE) and balanced fluorescence quantum yield to enable efficient tumor treatment while minimizing damage to surrounding healthy tissues. In this study, we designed donor–acceptor–donor structured dyes, 4,4’-((6,7-di(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline-4,9-diyl)bis(thiophene-5,2-diyl))bis(N,N-bis(4-methoxyphenyl)aniline) (IT-STPA) and 4,4’-((6,7-di(furan-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline-4,9-diyl)bis(thiophene-5,2-diyl))bis(N,N-bis(4-methoxyphenyl)aniline) (IT-OTPA), featuring furan-modified thiadiazolo-quinoxaline for near-infrared–II (NIR-II) fluorescence imaging and enhanced PCE. The furan and thiophene modifications promoted aggregation-induced emission, resulting in strong fluorescence emission (1 000–1 400 nm) while maintaining a high PCE of 48.5%. IT-OTPA was encapsulated into nanoparticles for improved aqueous dispersion and combined with the HSP70 inhibitor apoptozole (APZ) to form OTAPZ nanoparticles. The efficacy of this combination was evaluated both in vitro and in vivo, showing efficient tumor targeting and effective MTPTT under NIR laser irradiation. This study presents a promising approach for enhancing MTPTT through balanced photothermal and fluorescence properties, offering new possibilities for cancer treatment.

Electronic Supplementary Material

Download File(s)
NBE-2025-0014_ESM.pdf (1.6 MB)

References

[1]
Y.C. Liu, L.L. Teng, X.F. Lou, et al. “Four-In-one” design of a hemicyanine-based modular scaffold for high-contrast activatable molecular afterglow imaging. Journal of the American Chemical Society, 2023, 145(9): 5134–5144. https://doi.org/10.1021/jacs.2c11466
[2]

Y.J. Liu, P. Bhattarai, Z.F. Dai, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Reviews, 2019, 48(7): 2053−2108. https://doi.org/10.1039/C8CS00618K

[3]

Q.L. Ma, X. Sun, W.L. Wang, et al. Diketopyrrolopyrrole-derived organic small molecular dyes for tumor phototheranostics. Chinese Chemical Letters, 2022, 33(4): 1681−1692. https://doi.org/10.1016/j.cclet.2021.10.054

[4]

P.A. Schornack, R.J. Gillies. Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia, 2003, 5(2): 135−145. https://doi.org/10.1016/S1476-5586(03)80005-2

[5]

H.S. Jung, P. Verwilst, A. Sharma, et al. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chemical Society Reviews, 2018, 47(7): 2280−2297. https://doi.org/10.1039/C7CS00522A

[6]

H.T. Chen, P.P. Bao, Y.H. Lv, et al. Enhancing NIR-II imaging and photothermal therapy for improved oral cancer theranostics by combining TICT and aggregation-induced emission. ACS Applied Materials & Interfaces, 2023, 15(49): 56895−56908. https://doi.org/10.1021/acsami.3c14905

[7]

M. Wang, D.Y. Yan, M. Wang, et al. A versatile 980 nm absorbing aggregation-induced emission luminogen for NIR-II imaging-guided synergistic photo-immunotherapy against advanced pancreatic cancer. Advanced Functional Materials, 2022, 32(36): 2205371. https://doi.org/10.1002/adfm.202205371

[8]

H.C. Shen, F.Y. Sun, X.Y. Zhu, et al. Rational design of NIR-II AIEgens with ultrahigh quantum yields for photo- and chemiluminescence imaging. Journal of the American Chemical Society, 2022, 144(33): 15391−15402. https://doi.org/10.1021/jacs.2c07443

[9]

J.W. Song, X.Y. Kang, L. Wang, et al. Near-infrared-II photoacoustic imaging and photo-triggered synergistic treatment of thrombosis via fibrin-specific homopolymer nanoparticles. Nature Communications, 2023, 14: 6881. https://doi.org/10.1038/s41467-023-42691-8

[10]

B. Li, M. Zhao, W. Lai, et al. Activatable NIR-II photothermal lipid nanoparticles for improved messenger RNA delivery. Angewandte Chemie International Edition, 2023, 62(25): e202302676. https://doi.org/10.1002/anie.202302676

[11]
L. He, L.H. He, S. Xu, et al. Engineering of reversible NIR-II redox-responsive fluorescent probes for imaging of inflammation in vivo. Angewandte Chemie International Edition, 2022, 61(46): e202211409. https://doi.org/10.1002/anie.202211409
[12]

G.S. Hong, A.L. Antaris, H.J. Dai. Near-infrared fluorophores for biomedical imaging. Nature Biomedical Engineering, 2017, 1: 0010. https://doi.org/10.1038/s41551-016-0010

[13]

C.F. You, Y.Q. Zhu, J. Zhu, et al. Strength in numbers: A giant NIR-II AIEgen with one-for-all phototheranostic features for exceptional orthotopic bladder cancer treatment. Angewandte Chemie International Edition, 2025, 64(6): e202417865. https://doi.org/10.1002/anie.202417865

[14]

Z. Zhao, H.K. Zhang, J.W.Y. Lam, et al. Aggregation-induced emission: new vistas at the aggregate leve. Angewandte Chemie International Edition, 2020, 59(25): 9888−9907. https://doi.org/10.1002/anie.201916729

[15]

Q.Q. Li, Z. Li. Miracles of molecular uniting. Science China Materials, 2020, 63(2): 177−184. https://doi.org/10.1007/s40843-019-1172-2

[16]

N. Jiang, T.X. Shen, J.Z. Sun, et al. Aggregation-induced emission: Right there shining. Science China Materials, 2019, 62(9): 1227−1235. https://doi.org/10.1007/s40843-019-9443-8

[17]

S.D. Xu, Y.K. Duan, B. Liu. Precise molecular design for high-performance luminogens with aggregation-induced emission. Advanced Materials, 2020, 32(1): e1903530. https://doi.org/10.1002/adma.201903530

[18]

S. Liu, Y. Li, J. Zhang, et al. A two-in-one Janus NIR-II AIEgen with balanced absorption and emission for image-guided precision surgery. Materials Today Bio, 2021, 10: 100087. https://doi.org/10.1016/j.mtbio.2020.100087

[19]
L. Yuan, Y.B. Su, B. Yu, et al. D-A-D organic small molecules with AIE effect for fluorescence imaging guided photothermal therapy. Biomaterials Science, 2023, 11(3): 985–997. https://pubmed.ncbi.nlm.nih.gov/36541206/
[20]

C. Wang, F. Wang, W.T. Zou, et al. Donor-acceptor-donor small molecules for fluorescence/photoacoustic imaging and integrated photothermal therapy. Acta Biomaterialia, 2023, 164: 588−603. https://doi.org/10.1016/j.actbio.2023.04.024

[21]

P.P. Xiao, Y. Sun, M.K. Liang, et al. A fluorophore with dithienopyrrole donor for beyond 1300 nm NIR-II fluorescence/photoacoustic dual-model imaging and photothermal therapy. Materials Today Nano, 2023, 24: 100404. https://doi.org/10.1016/j.mtnano.2023.100404

[22]

J. Li, R.N. Wang, Y. Sun, et al. NIR-II fluorophore with dithienylethene as an electron donor for fluorescence/photoacoustic dual-model imaging and photothermal therapy. ACS Applied Materials & Interfaces, 2021, 13(46): 54830−54839. https://doi.org/10.1021/acsami.1c17813

[23]

G.D. Chai, J.Q. Zhang, M. Pan, et al. Deciphering the role of chalcogen-containing heterocycles in nonfullerene acceptors for organic solar cells. ACS Energy Letters, 2020, 5(11): 3415. https://doi.org/10.1021/acsenergylett.0c01688

[24]

B. Briou, B. Améduri, B. Boutevin. Trends in the Diels–Alder reaction in polymer chemistry. Chemical Society Reviews, 2021, 50(19): 11055−11097. https://doi.org/10.1039/D0CS01382J

[25]

R.C. Cioc, M. Crockatt, J.C. van der Waal, et al. The interplay between kinetics and thermodynamics in furan Diels-alder chemistry for sustainable chemicals production. Angewandte Chemie International Edition, 2022, 61(17): e202114720. https://doi.org/10.1002/anie.202114720

[26]

Z.L. Cao, M.Y. Wang, H.M. Gao, et al. Porous organic polymers via Diels-alder reaction for the removal of Cr(VI) from aqueous solutions. ACS Macro Letters, 2022, 11(4): 447−451. https://doi.org/10.1021/acsmacrolett.2c00052

[27]

Y.X. Xu, C.C. Chueh, H.L. Yip, et al. Improved charge transport and absorption coefficient in indacenodithieno [3, 2-b] thiophene-based ladder-type polymer leading to highly efficient polymer solar cells. Advanced Materials, 2012, 24(47): 6356−6361. https://doi.org/10.1002/adma.201203246

[28]

S.L. Li, X.Y. Wang, R. Hu, et al. Near-infrared (NIR)-absorbing conjugated polymer dots as highly effective photothermal materials for in vivo cancer therapy. Chemistry of Materials, 2016, 28(23): 8669−8675. https://doi.org/10.1021/acs.chemmater.6b03738

[29]

X.G. Guo, N.J. Zhou, S.J. Lou, et al. Bithiopheneimide-dithienosilole/dithienogermole copolymers for efficient solar cells: Information from structure-property-device performance correlations and comparison to thieno [3, 4-c] pyrrole-4, 6-dione analogues. Journal of the American Chemical Society, 2012, 134(44): 18427−18439. https://doi.org/10.1021/ja3081583

[30]

X.H. Gao, Y.Y. Cui, R.M. Levenson, et al. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 2004, 22(8): 969−976. https://doi.org/10.1038/nbt994

[31]

L. Cheng, W.W. He, H. Gong, et al. PEGylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly-effective photothermal agent for in vivo cancer therapy. Advanced Functional Materials, 2013, 23(47): 5893−5902. https://doi.org/10.1002/adfm.201301045

[32]

B.W. Yang, Y. Chen, J.L. Shi. Tumor-specific chemotherapy by nanomedicine-enabled differential stress sensitization. Angewandte Chemie International Edition, 2020, 59(24): 9693−9701. https://doi.org/10.1002/anie.202002306

[33]

Q. Cheng, T.W. Li, Y.L. Tian, et al. NIR-II fluorescence imaging-guided photothermal therapy with amphiphilic polypeptide nanoparticles encapsulating organic NIR-II dye. ACS Applied Bio Materials, 2020, 3(12): 8953−8961. https://doi.org/10.1021/acsabm.0c01218

Nano Biomedicine and Engineering
Cite this article:
Sun X, Zhang Z, Xiang C, et al. Donor–Acceptor–Donor Structured Dyes with Balanced Photothermal Conversion Efficiency and Fluorescence Quantum Yield for Near-Infrared–II Mild-Temperature Photothermal Therapy. Nano Biomedicine and Engineering, 2025, https://doi.org/10.26599/NBE.2025.9290120

444

Views

187

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 13 February 2025
Revised: 03 March 2025
Accepted: 07 March 2025
Published: 09 April 2025
© The Author(s) 2025.

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return