Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Pistacia lentiscus leaf extract has been used as a reducing and capping agent for the green production of zinc oxide nanoparticles (ZnO NPs) to evaluate their antioxidant and antibacterial properties. The optical and structural properties were determined by ultraviolet–visible (UV–Vis) spectra, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). In the UV–Vis spectra, an absorption peak at 310 nm was observed, whereas the FTIR spectra revealed a peak at 680 cm−1, attributed to the vibration of ZnO NPs and confirmed their formation. X-ray analysis showed the crystalline quality of the ZnO product, with well-defined peaks on the (002), (100), and (101) planes, confirming a hexagonal structure (JCPDS-file: 36-1451). The grain size of the ZnO NPs was approximately 33.90 nm in diameter. Using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (EDS), the morphology of the nanoparticles resembled dried cotton, whereas EDS confirmed the presence of zinc (Zn) and oxygen (O). The evaluation of antioxidant activity involved the DPPH test, thin-layer chromatography (TLC) bioautography, and spectrophotometric assay. The methanolic extract exhibited high antiradical potential, followed by aqueous, etheric, and finally ZnO NPs. Testing the antibacterial activity against two Gram-positive bacterial strains (Staphylococcus aureus and Bacillus cereus) and two Gram-negative strains (Escherichia coli and Pseudomonas aeruginosa) involved determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The results showed that zinc oxide nanoparticles displayed considerable antibacterial effects compared with crude extracts, demonstrating inhibition zones of (24 ± 1) mm and (20 ± 2) mm, respectively, against E. coli and P. aeruginosa, with a bactericidal effect evident by a MBC/MIC ratio of 2.
N. Senthilkumar, E. Nandhakumar, P. Priya, et al. Synthesis of Zno nanoparticles using leaf extract of Tectona grandis (L.) and their antibacterial, anti-arthritic, antioxidant and in vitro cytotoxicity activities. New Journal of Chemistry, 2017, 41(18): 10347−10356. https://doi.org/10.1039/C7NJ02664A
K.B. Narayanan, N. Sakthivel. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in Colloid and Interface Science, 2011, 169(2): 59−79. https://doi.org/10.1016/j.cis.2011.08.004
A.A. Ezhilarasi, J.J. Vijaya, K. Kaviyarasu, et al. Green synthesis of nickel oxide nanoparticles using Solanum trilobatum extract for cytotoxicity, antibacterial and photocatalytic studies. Surfaces and Interfaces, 2020, 20: 100553. https://doi.org/10.1016/j.surfin.2020.100553
M. Anandan, G. Poorani, P. Boomi, et al. Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities. Process Biochemistry, 2019, 80: 80−88. https://doi.org/10.1016/j.procbio.2019.02.014
Y.-J. Choi, H.-H. Park. Direct patterning of SnO2 composite films prepared with various contents of Pt nanoparticles by photochemical metal-organic deposition. Thin Solid Films, 2011, 519(19): 6214−6218. https://doi.org/10.1016/j.tsf.2011.03.051
C. Dagdeviren, S.W. Hwang, Y. Su, et al. Transient, biocompatible electronics and energy harvesters based on ZnO. Small, 2013, 9(20): 3398−3404. https://doi.org/10.1002/smll.201300146
J.W. Rasmussen, E. Martinez, P. Louka, et al. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opinion on Drug Delivery, 2010, 7(9): 1063−1077. https://doi.org/10.1517/17425247.2010.502560
L. Nie, L. Gao, P. Feng, et al. Three-dimensional functionalized tetrapod-like ZnO nanostructures for plasmid DNA delivery. Small, 2006, 2(5): 621−625. https://doi.org/10.1002/smll.200500193
G. Applerot, A. Lipovsky, R. Dror, et al. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Advanced Functional Materials, 2009, 19(6): 842−852. https://doi.org/10.1002/adfm.200801081
A. Alkaladi, A.M. Abdelazim, M. Afifi. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. International Journal of Molecular Sciences, 2014, 15(2): 2015−2023. https://doi.org/10.3390/ijms15022015
N. Grara, M. Bouloudenine, F. Khaldi, et al. Caractérisation morphophysiologique de la Toxicité du ZnO (Nanoparticule manufacturée) sur l’escargot l’ Helix aspersa bio indicateur de pollution de l'environnement. Journal of Materials and Environmental Science, 2015, 6(9): 2596−2603.
I. Bibi, N. Nazar, M. Iqbal, et al. Green and eco-friendly synthesis of cobalt-oxide nanoparticle: characterization and photo-catalytic activity. Advanced Powder Technology, 2017, 28(9): 2035−2043. https://doi.org/10.1016/j.apt.2017.05.008
J. Santhoshkumar, S.V. Kumar, S. Rajeshkumar. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 2017, 3(4): 459−465. https://doi.org/10.1016/j.reffit.2017.05.001
J.L. Gardea-Torresdey, E. Gomez, J. Peralta-Videa, et al. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 2003, 19(4): 1357−1361. https://doi.org/10.1021/la020835i
V.V. Makarov, A.J. Love, O.V. Sinitsyna, et al. Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 2014, 6(1): 35−44. https://doi.org/10.32607/20758251-2014-6-1-35-44
A. Raja, S. Ashokkumar, R. Pavithra Marthandam, et al. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. Journal of Photochemistry and Photobiology B:Biology, 2018, 181: 53−58. https://doi.org/10.1016/j.jphotobiol.2018.02.011
M.S. Shekhawat, M. Manokari. Biogenesis of zinc oxide nanoparticles using Morinda pubescens J.E, Smith extracts and their characterization. International Journal of Biomedical Engineering and Technology, 2014, 5(1): 1−6.
I. Hussain, N.B. Singh, A. Singh, et al. Green synthesis of nanoparticles and its potential application. Biotechnology Letters, 2016, 38(4): 545−560. https://doi.org/10.1007/s10529-015-2026-7
Jaishree, Sachin. Natural products and by-products as a cost-effective adsorbent for Cr (VI) removal from water sources: a review. Austin Environmental Sciences, 2022, 7(2): 1074. https://doi.org/10.26420/austinenvironsci.2022.1074
M. Naseer, U. Aslam, B. Khalid, et al. Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Scientific Reports, 2020, 10: 9055. https://doi.org/10.1038/s41598-020-65949-3
Sachin, Jaishree, N. Singh, et al. Green synthesis of Zinc Oxide Nanoparticles using lychee peel and its application in anti-bacterial properties and CR dye removal from wastewater. Chemosphere, 2023, 327: 138497. https://doi.org/10.1016/j.chemosphere.2023.138497
A. Aziz, Z. Memon, A. Bhutto. Efficient photocatalytic degradation of industrial wastewater dye by Grewia asiatica mediated zinc oxide nanoparticles. Optik, 2023, 272: 170352. https://doi.org/10.1016/J.IJLEO.2022.170352
M.A. Abomuti, E.Y. Danish, A. Firoz, et al. Green synthesis of zinc oxide nanoparticles using Salvia officinalis leaf extract and their photocatalytic and antifungal activities. Biology, 2021, 10(11): 1075. https://doi.org/10.3390/biology10111075
M. MuthuKathija, M.S.M. Badhusha, V. Rama. Green synthesis of zinc oxide nanoparticles using Pisonia Alba leaf extract and its antibacterial activity. Applied Surface Science Advances, 2023, 15: 100400. https://doi.org/10.1016/j.apsadv.2023.100400
K.M. Ezealisiji, X. Siwe-Noundou, B. Maduelosi, et al. Green synthesis of zinc oxide nanoparticles using Solanum torvum (L) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats. International Nano Letters, 2019, 9: 99−107. https://doi.org/10.1007/s40089-018-0263-1
U.L. Ifeanyichukwu, O.E. Fayemi, C.N. Ateba. Green synthesis of zinc oxide nanoparticles from pomegranate (Punica granatum) extracts and characterization of their antibacterial activity. Molecules, 2020, 25: 4521. https://doi.org/10.3390/molecules25194521
E.E. Imade, T.O. Ajiboye, A.E. Fadiji, et al. Green synthesis of zinc oxide nanoparticles using plantain peel extracts and the evaluation of their antibacterial activity. Scientific African, 2022, 16: e01152. https://doi.org/10.1016/j.sciaf.2022.e01152
N. Vijayakumar, V.K. Bhuvaneshwari, G.K. Ayyadurai, et al. Green synthesis of zinc oxide nanoparticles using Anoectochilus elatus, and their biomedical applications. Saudi Journal of Biological Sciences, 2022, 29(4): 2270−2279. https://doi.org/10.1016/j.sjbs.2021.11.065
P.C. Nagajyothi, S.J. Cha, I.J. Yang, et al. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. Journal of Photochemistry and Photobiology B:Biology, 2015, 146: 10−17. https://doi.org/10.1016/j.jphotobiol.2015.02.008
N.A. Al-Dhabi, M.V. Arasu. Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials, 2018, 8(7): 500. https://doi.org/10.3390/nano8070500
Y. Dogan, S. Baslar, H. Aydin, et al. A Study of the soil-plant interactions of Pistacia lentiscus L. distributed in the western Anatolian part of Turkey. Acta Botanica Croatica, 2003, 62(2): 73−88.
A. Bouyahya, N. Dakka, A. Talbaoui, et al. Phenolic contents and antiradical capacity of vegetable oil from Pistacia lentiscus (L). Journal of Materials and Environmental Science, 2018, 9: 1518−1524.
H. Benamar, A. Marouf, M. Bennaceur. Phytochemical composition, antioxidant and acetylcholinesterase inhibitory activities of aqueous extract and fractions of Pistacia atlantica subsp. atlantica from Algeria. Journal of Herbs,Spices &Medicinal Plants, 2018, 24(3): 229−244. https://doi.org/10.1080/10496475.2018.1446204
M. Gaytan-Martínez, A.H. Cabrera-Ramírez, E. Morales-Sanchez et al. Effect of nixtamalization process on the content and composition of phenolic compounds and antioxidant activity of two sorghums varieties. Journal of Cereal Science, 2017, 77: 1−8. https://doi.org/10.1016/j.jcs.2017.06.014
I., Kosalec, M. Bakmaz, S. Pepeljnjak, et al. Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acta Pharmaceutica, 2004, 54(1): 65−72.
R.B. Broadhurst, W.T. Jones. Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 1978, 29(9): 788−794. https://doi.org/10.1002/jsfa.2740290908
F.T. Thema, E. Manikandan, M.S. Dhlamini, et al. Green synthesis of ZnO Nanoparticles via Agathosma betulina natural extract. Materials Letters, 2015, 161: 124−127. https://doi.org/10.1016/j.matlet.2015.08.052
T.U. Doan Thi, T.T. Nguyen, Y.D. Thi, et al. Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Advances, 2020, 10: 23899−23907. https://doi.org/10.1039/d0ra04926c
H. Huang, and X. Yang. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydrate Research, 2004, 339(15): 2627−2631. https://doi.org/10.1016/j.carres.2004.08.005
M.M.R. Mollick, D. Rana, S.K. Dash, et al. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arabian Journal of Chemistry, 2019, 12(8): 2572−2584. https://doi.org/10.1016/j.arabjc.2015.04.033
Y. Shin, I-T. Bae, B.W. Arey, et al. Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. The Journal of Physical Chemistry C, 2008, 112(13): 4844−4848. https://doi.org/10.1021/jp710767w
C. Fong, D. Wells, I. Krodkiewska, et al. New role for urea as a surfactant headgroup promoting self-assembly in water. Chemistry of Materials, 2006, 18: 594. https://doi.org/10.1021/cm0522681
M.S. Blois. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181: 1199−1200. https://doi.org/10.1038/1811199a0
Y.M. Choi, D.O. Noh, S.Y. Cho et al. Antioxidant and antimicrobial activities of propolis from several regions of Korea. Lebensmittel-Wissenschaft &Technologie LWT, 2006, 39: 756−761. https://doi.org/10.1016/j.lwt.2005.05.015
A.G. Ponce, R. Fritz, C. del Valle, et al. Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT - Food Science and Technology, 2003, 36(7): 679−684. https://doi.org/10.1016/S0023-6438(03)00088-4
F. Konan Kouadio, N.K. Guessennd, O. Karamoko, et al. Action antibactérienne de l’extrait éthanolique 70% de Clerodendrum splendens (G. Don) (Verbenacae) sur des souches bactériennes isolées de selles chez des enfants diarrhéiques. International Journal of Biological and Chemical Sciences, 2013, 7(3): 1332−1337. https://doi.org/10.4314/ijbcs.v7i3.38
M. Barbouchi, K. Elamrani, M. El Idrissi, et al. A comparative study on phytochemical screening, quantification of phenolic contentsand antioxidant properties of different solvent extracts from various parts of Pistacia lentiscus L. Journal of King Saud University – Science, 2018, 32(1): 12. https://doi.org/10.1016/j.jksus.2018.05.010
S. Remila, D. Atmani-Kilani, S. Delemasure, et al. Antioxidant, cytoprotective, anti-inflammatory and anticancer activities of Pistacia lentiscus (Anacardiaceae) leaf and fruit extracts. European Journal of Integrative Medicine, 2015, 7(3): 274−286. https://doi.org/10.1016/j.eujim.2015.03.009
H. Bouriche, A. Saidi, A. Ferradji, et al. Anti-inflammatory and immunomodulatory properties of Pistatia lentiscus extracts. Journal of Applied Pharmaceutical Science, 2016, 6(7): 140−146. https://doi.org/10.7324/JAPS.2016.60721
A. Bampouli, K. Kyriakopoulou, G. Papaefstathiou, et al. Evaluation of total antioxidant potential of Pistacia lentiscus var. chia leaves extracts using UHPLC–HRMS. Journal of Food Engineering, 2015, 167: 25−31. https://doi.org/10.1016/j.jfoodeng.2014.10.021
S. Bakli, D. Harzallah, A. Zerroug, et al. Antimicrobial and antioxidant activities of flavonoids extracted from Pistacia lentiscus L., leaves. Journal of Drug Delivery &Therapeutics, 2020, 10(1-s): 83−89. https://doi.org/10.22270/jddt.v10i1-s.3895
D. Atmani, N. Chaher, M. Berboucha, et al. Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chemistry, 2009, 112(2): 303−309. https://doi.org/10.1016/j.foodchem.2008.05.077
G.T. Anand, D. Renuka, R. Ramesh, et al. Green synthesis of ZnO nanoparticle using Prunus dulcis (almond gum) for antimicrobial and supercapacitor applications. Surfaces and Interfaces, 2019, 17: 100376. https://doi.org/10.1016/j.surfin.2019.100376
J. Osuntokun, C. Damian, E. Onwudiwe, et al. Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea L. var. italica and the photocatalytic activity. Green Chemistry Letters and Reviews, 2019, 12(4): 444−457. https://doi.org/10.1080/17518253.2019.1687761
A.C. Taş, P.J. Majewski, F. Aldinger. Chemical preparation of pure and strontium- and/or magnesium‐doped lanthanum gallate powders. Journal of the American Ceramic Society, 2000, 83(12): 2954−2960. https://doi.org/10.1111/j.1151-2916.2000.tb01666.x
R. Kumar, G. Kumar, A. Umar. ZnO nano-mushrooms for photocatalytic degradation of methyl orange. Materials Letters, 2013, 97: 100−103. https://doi.org/10.1016/j.matlet.2013.01.044
A.B. Lavand, Y.S. Malghe. Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite. Journal of Saudi Chemical Society, 2015, 19: 471−478. https://doi.org/10.1016/j.jscs.2015.07.001
D. Belhachat, F. Aid, L. Mekimene, et al. Phytochemical screening and in vitro antioxidant activity of Pistacia lentiscus berries ethanolic extract growing in Algeria. Mediterranean Journal of Nutrition and Metabolism, 2017, 10: 273−285. https://doi.org/10.3233/MNM-17169
R. Hemma, S. Belhadj, C. Ouahchia, et al. Antioxidant activity of Pistacia lentiscus methanolic extracts. Revue Agrobiologia, 2018, 8(1): 845−852.
K.E. Heim, A.R. Tagliaferro, D.J. Bobilya. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry, 2002, 13(10): 572−584. https://doi.org/10.1016/S0955-2863(02)00208-5
N.T. Erol, F. Sarı, Y.S. Velioglu. Polyphenols, alkaloids and antioxidant activity of different grades Turkish black tea. GIDA, 2010, 35(3): 161−168.
A.d.P. Bidie, B.B. N’Guessan, A.F. Yapo, et al. Activités antioxydantes de dix plantes medicinales de la pharmacopée ivoirienne. Sciences &Nature, 2011, 8(1): 1−11.
T. Andzi Barhé, G.R. Feuya Tchouya. Comparative study of the anti-oxidant activity of the total polyphenols extracted from Hibiscus sabdariffa L., Glycine max L. Merr., yellow tea and red wine through reaction with DPPH free radicals. Arabian Journal of Chemistry, 2016, 9(1): 1−8. https://doi.org/10.1016/j.arabjc.2014.11.048
S. Roy, J.-W. Rhim. Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin. Food Hydrocolloids, 2019, 90: 500−507. https://doi.org/10.1016/j.foodhyd.2018.12.056
M.S. Ali-Shtayeh, R.M.-R. Yaghmour, Y.R. Faidi, et al. Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. Journal of Ethno Pharmacology, 1998, 60: 265−271. https://doi.org/10.1016/s0378-8741(97)00153-0
G. Sharmila, C. Muthukumaran, K. Sandiya, et al. Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. Journal of Nanostructure in Chemistry, 2018, 8: 293−299. https://doi.org/10.1007/s40097-018-0271-8
M. Iswarya, P. Sudha, V. Kalaiselvi, et al. Solanum nigrum leaf extract capped synthesis of ZnO nanoparticles. Journal of Environmental Nanotechnology, 2020, 9: 37−41. https://doi.org/10.13074/jent.2020.12.204424
J. Vidic, S. Stankic, F. Haque, et al. Selective antibacterial effects of mixed ZnMgO nanoparticles. Journal of Nanoparticle Research, 2013, 15(5): 1595. https://doi.org/10.1007/s11051-013-1595-4
N.H. Aysa, H.D. Salman. Antibacterial activity of modified zinc oxide nanoparticles against Pseudomonas aeruginosa isolates of burn infections. World Scientific News, 2016, 33: 1−14.
U. Kadiyala, E.S. Turali-Emre, J.H. Bahng, et al. Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA). Nanoscale, 2018, 10: 4927−4939. https://doi.org/10.1039/C7NR08499D
H. Zhang, G. Chen. Potent antibacterial activities of Ag/TiO2 nanocomposite: powders synthesized by a one-pot sol−gel method. Environmental Science &Technology, 2009, 43(8): 2905−2910. https://doi.org/10.1021/es803450f
K. Kairyt, A. Kadys, Z. Luksiene. Antibacterial and antifungal activity of photo activated ZnO nanoparticles in suspension. Journal of Photochemistry and Photobiology B:Biology, 2013, 128: 78−84. https://doi.org/10.1016/j.jphotobiol.2013.07.017
A. Sirelkhatim, S. Mahmud, A. Seeni, et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano Micro Letters, 2015, 7: 219−242. https://doi.org/10.1007/s40820-015-0040-x
Y.-W. Huang, C.-H. Wu, R.S. Aronstam. Toxicity of transition metal oxide nanoparticles: Recent insights from in vitro studies. Materials, 2010, 3(10): 4842−4859. https://doi.org/10.3390/ma3104842
Z.B. Huang, X. Zheng, D.H. Yan, et al. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir, 2008, 24(8): 4140−4144. https://doi.org/10.1021/la7035949
M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, et al. Antibacterial properties of nanoparticles. Trends in Biotechnology, 2012, 30(10): 499−511. https://doi.org/10.1016/j.tibtech.2012.06.004
Z. Xia, J. Min, S. Zhou, et al. Photocatalytic performance and antibacterial mechanism of Cu/Ag-molybdate powder material. Ceramics International, 2021, 47(9): 12667−12679. https://doi.org/10.1016/j.ceramint.2021.01.127
Y. Liu, L. He, A. Mustapha, et al. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology, 2009, 107(4): 1193−1201. https://doi.org/10.1111/j.1365-2672.2009.04303.x
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.