Journal Home > Volume 16 , Issue 2

Pistacia lentiscus leaf extract has been used as a reducing and capping agent for the green production of zinc oxide nanoparticles (ZnO NPs) to evaluate their antioxidant and antibacterial properties. The optical and structural properties were determined by ultraviolet–visible (UV–Vis) spectra, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). In the UV–Vis spectra, an absorption peak at 310 nm was observed, whereas the FTIR spectra revealed a peak at 680 cm−1, attributed to the vibration of ZnO NPs and confirmed their formation. X-ray analysis showed the crystalline quality of the ZnO product, with well-defined peaks on the (002), (100), and (101) planes, confirming a hexagonal structure (JCPDS-file: 36-1451). The grain size of the ZnO NPs was approximately 33.90 nm in diameter. Using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (EDS), the morphology of the nanoparticles resembled dried cotton, whereas EDS confirmed the presence of zinc (Zn) and oxygen (O). The evaluation of antioxidant activity involved the DPPH test, thin-layer chromatography (TLC) bioautography, and spectrophotometric assay. The methanolic extract exhibited high antiradical potential, followed by aqueous, etheric, and finally ZnO NPs. Testing the antibacterial activity against two Gram-positive bacterial strains (Staphylococcus aureus and Bacillus cereus) and two Gram-negative strains (Escherichia coli and Pseudomonas aeruginosa) involved determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The results showed that zinc oxide nanoparticles displayed considerable antibacterial effects compared with crude extracts, demonstrating inhibition zones of (24 ± 1) mm and (20 ± 2) mm, respectively, against E. coli and P. aeruginosa, with a bactericidal effect evident by a MBC/MIC ratio of 2.


menu
Abstract
Full text
Outline
About this article

Green Synthesis of Zinc Oxide Nanoparticles Using Pistacia lentiscus L. Leaf Extact and Evaluating their Antioxydant and Antibacterial Properties

Show Author's information Rihab Haddi1( )Aicha Maria El Kharraz2Mimouna Ikram Kerroumi2
Laboratory of Valorization of Vegetal Resource and Food Security in Semi-arid Areas in southwest Algeria, Department of Biology, Faculty of Sciences, TAHRI Mohamed university Bechar, Algeria
Department of Biology, Faculty of Sciences, TAHRI Mohamed University Bechar, Algeria

Abstract

Pistacia lentiscus leaf extract has been used as a reducing and capping agent for the green production of zinc oxide nanoparticles (ZnO NPs) to evaluate their antioxidant and antibacterial properties. The optical and structural properties were determined by ultraviolet–visible (UV–Vis) spectra, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). In the UV–Vis spectra, an absorption peak at 310 nm was observed, whereas the FTIR spectra revealed a peak at 680 cm−1, attributed to the vibration of ZnO NPs and confirmed their formation. X-ray analysis showed the crystalline quality of the ZnO product, with well-defined peaks on the (002), (100), and (101) planes, confirming a hexagonal structure (JCPDS-file: 36-1451). The grain size of the ZnO NPs was approximately 33.90 nm in diameter. Using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (EDS), the morphology of the nanoparticles resembled dried cotton, whereas EDS confirmed the presence of zinc (Zn) and oxygen (O). The evaluation of antioxidant activity involved the DPPH test, thin-layer chromatography (TLC) bioautography, and spectrophotometric assay. The methanolic extract exhibited high antiradical potential, followed by aqueous, etheric, and finally ZnO NPs. Testing the antibacterial activity against two Gram-positive bacterial strains (Staphylococcus aureus and Bacillus cereus) and two Gram-negative strains (Escherichia coli and Pseudomonas aeruginosa) involved determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The results showed that zinc oxide nanoparticles displayed considerable antibacterial effects compared with crude extracts, demonstrating inhibition zones of (24 ± 1) mm and (20 ± 2) mm, respectively, against E. coli and P. aeruginosa, with a bactericidal effect evident by a MBC/MIC ratio of 2.

Keywords: antibacterial activity, green synthesis, antioxidant activity, phytochemical screening, zinc oxide nanopartices (ZnO NPs), Pistacia lentiscus L.

References(104)

[1]

N. Senthilkumar, E. Nandhakumar, P. Priya, et al. Synthesis of Zno nanoparticles using leaf extract of Tectona grandis (L.) and their antibacterial, anti-arthritic, antioxidant and in vitro cytotoxicity activities. New Journal of Chemistry, 2017, 41(18): 10347−10356. https://doi.org/10.1039/C7NJ02664A

[2]

K.B. Narayanan, N. Sakthivel. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in Colloid and Interface Science, 2011, 169(2): 59−79. https://doi.org/10.1016/j.cis.2011.08.004

[3]

A.A. Ezhilarasi, J.J. Vijaya, K. Kaviyarasu, et al. Green synthesis of nickel oxide nanoparticles using Solanum trilobatum extract for cytotoxicity, antibacterial and photocatalytic studies. Surfaces and Interfaces, 2020, 20: 100553. https://doi.org/10.1016/j.surfin.2020.100553

[4]
K. Periyasamy, S. Kaliyaperumal, Eco-friendly synthesis of silver nanoparticles using Ventilago maderaspatana (GAERTN), their morphological characterization. International Journal of ChemTech Research, 2017, 10 (9): 01–06.
[5]

M. Anandan, G. Poorani, P. Boomi, et al. Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities. Process Biochemistry, 2019, 80: 80−88. https://doi.org/10.1016/j.procbio.2019.02.014

[6]

Y.-J. Choi, H.-H. Park. Direct patterning of SnO2 composite films prepared with various contents of Pt nanoparticles by photochemical metal-organic deposition. Thin Solid Films, 2011, 519(19): 6214−6218. https://doi.org/10.1016/j.tsf.2011.03.051

[7]

C. Dagdeviren, S.W. Hwang, Y. Su, et al. Transient, biocompatible electronics and energy harvesters based on ZnO. Small, 2013, 9(20): 3398−3404. https://doi.org/10.1002/smll.201300146

[8]

J.W. Rasmussen, E. Martinez, P. Louka, et al. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opinion on Drug Delivery, 2010, 7(9): 1063−1077. https://doi.org/10.1517/17425247.2010.502560

[9]

L. Nie, L. Gao, P. Feng, et al. Three-dimensional functionalized tetrapod-like ZnO nanostructures for plasmid DNA delivery. Small, 2006, 2(5): 621−625. https://doi.org/10.1002/smll.200500193

[10]

G. Applerot, A. Lipovsky, R. Dror, et al. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Advanced Functional Materials, 2009, 19(6): 842−852. https://doi.org/10.1002/adfm.200801081

[11]

A. Alkaladi, A.M. Abdelazim, M. Afifi. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. International Journal of Molecular Sciences, 2014, 15(2): 2015−2023. https://doi.org/10.3390/ijms15022015

[12]

N. Grara, M. Bouloudenine, F. Khaldi, et al. Caractérisation morphophysiologique de la Toxicité du ZnO (Nanoparticule manufacturée) sur l’escargot l’ Helix aspersa bio indicateur de pollution de l'environnement. Journal of Materials and Environmental Science, 2015, 6(9): 2596−2603.

[13]

I. Bibi, N. Nazar, M. Iqbal, et al. Green and eco-friendly synthesis of cobalt-oxide nanoparticle: characterization and photo-catalytic activity. Advanced Powder Technology, 2017, 28(9): 2035−2043. https://doi.org/10.1016/j.apt.2017.05.008

[14]

J. Santhoshkumar, S.V. Kumar, S. Rajeshkumar. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 2017, 3(4): 459−465. https://doi.org/10.1016/j.reffit.2017.05.001

[15]

J.L. Gardea-Torresdey, E. Gomez, J. Peralta-Videa, et al. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 2003, 19(4): 1357−1361. https://doi.org/10.1021/la020835i

[16]

V.V. Makarov, A.J. Love, O.V. Sinitsyna, et al. Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 2014, 6(1): 35−44. https://doi.org/10.32607/20758251-2014-6-1-35-44

[17]

A. Raja, S. Ashokkumar, R. Pavithra Marthandam, et al. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. Journal of Photochemistry and Photobiology B:Biology, 2018, 181: 53−58. https://doi.org/10.1016/j.jphotobiol.2018.02.011

[18]

M.S. Shekhawat, M. Manokari. Biogenesis of zinc oxide nanoparticles using Morinda pubescens J.E, Smith extracts and their characterization. International Journal of Biomedical Engineering and Technology, 2014, 5(1): 1−6.

[19]

I. Hussain, N.B. Singh, A. Singh, et al. Green synthesis of nanoparticles and its potential application. Biotechnology Letters, 2016, 38(4): 545−560. https://doi.org/10.1007/s10529-015-2026-7

[20]

Jaishree, Sachin. Natural products and by-products as a cost-effective adsorbent for Cr (VI) removal from water sources: a review. Austin Environmental Sciences, 2022, 7(2): 1074. https://doi.org/10.26420/austinenvironsci.2022.1074

[21]

M. Naseer, U. Aslam, B. Khalid, et al. Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Scientific Reports, 2020, 10: 9055. https://doi.org/10.1038/s41598-020-65949-3

[22]

Sachin, Jaishree, N. Singh, et al. Green synthesis of Zinc Oxide Nanoparticles using lychee peel and its application in anti-bacterial properties and CR dye removal from wastewater. Chemosphere, 2023, 327: 138497. https://doi.org/10.1016/j.chemosphere.2023.138497

[23]

A. Aziz, Z. Memon, A. Bhutto. Efficient photocatalytic degradation of industrial wastewater dye by Grewia asiatica mediated zinc oxide nanoparticles. Optik, 2023, 272: 170352. https://doi.org/10.1016/J.IJLEO.2022.170352

[24]

M.A. Abomuti, E.Y. Danish, A. Firoz, et al. Green synthesis of zinc oxide nanoparticles using Salvia officinalis leaf extract and their photocatalytic and antifungal activities. Biology, 2021, 10(11): 1075. https://doi.org/10.3390/biology10111075

[25]

M. MuthuKathija, M.S.M. Badhusha, V. Rama. Green synthesis of zinc oxide nanoparticles using Pisonia Alba leaf extract and its antibacterial activity. Applied Surface Science Advances, 2023, 15: 100400. https://doi.org/10.1016/j.apsadv.2023.100400

[26]

K.M. Ezealisiji, X. Siwe-Noundou, B. Maduelosi, et al. Green synthesis of zinc oxide nanoparticles using Solanum torvum (L) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats. International Nano Letters, 2019, 9: 99−107. https://doi.org/10.1007/s40089-018-0263-1

[27]

U.L. Ifeanyichukwu, O.E. Fayemi, C.N. Ateba. Green synthesis of zinc oxide nanoparticles from pomegranate (Punica granatum) extracts and characterization of their antibacterial activity. Molecules, 2020, 25: 4521. https://doi.org/10.3390/molecules25194521

[28]

E.E. Imade, T.O. Ajiboye, A.E. Fadiji, et al. Green synthesis of zinc oxide nanoparticles using plantain peel extracts and the evaluation of their antibacterial activity. Scientific African, 2022, 16: e01152. https://doi.org/10.1016/j.sciaf.2022.e01152

[29]

N. Vijayakumar, V.K. Bhuvaneshwari, G.K. Ayyadurai, et al. Green synthesis of zinc oxide nanoparticles using Anoectochilus elatus, and their biomedical applications. Saudi Journal of Biological Sciences, 2022, 29(4): 2270−2279. https://doi.org/10.1016/j.sjbs.2021.11.065

[30]

P.C. Nagajyothi, S.J. Cha, I.J. Yang, et al. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. Journal of Photochemistry and Photobiology B:Biology, 2015, 146: 10−17. https://doi.org/10.1016/j.jphotobiol.2015.02.008

[31]

N.A. Al-Dhabi, M.V. Arasu. Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials, 2018, 8(7): 500. https://doi.org/10.3390/nano8070500

[32]

Y. Dogan, S. Baslar, H. Aydin, et al. A Study of the soil-plant interactions of Pistacia lentiscus L. distributed in the western Anatolian part of Turkey. Acta Botanica Croatica, 2003, 62(2): 73−88.

[33]
N. Smail-Saadoun. Types stomatiques du genre Pistacia: Pistacia atlantica Desf. ssp. Atlantica et Pistacia lentiscus. In: XIII GREMPA Meeting on Almonds and Pistachios. Zaragoza: CIHEAM, 2005: 369–371.
[34]

A. Bouyahya, N. Dakka, A. Talbaoui, et al. Phenolic contents and antiradical capacity of vegetable oil from Pistacia lentiscus (L). Journal of Materials and Environmental Science, 2018, 9: 1518−1524.

[35]

H. Benamar, A. Marouf, M. Bennaceur. Phytochemical composition, antioxidant and acetylcholinesterase inhibitory activities of aqueous extract and fractions of Pistacia atlantica subsp. atlantica from Algeria. Journal of Herbs,Spices &Medicinal Plants, 2018, 24(3): 229−244. https://doi.org/10.1080/10496475.2018.1446204

[36]
P. Ribéreau-Gayon. Les composés phénoliques des végétaux. Edition Dunod, Paris, 1968: 254.
[37]
R. Paris, H. Moyse. Précis de matière médicinale. Paris: Masson, 1969.
[38]
J.B. Harborne. Phytochemical methods. A Guide to Modern Techniques of Plant Analysis, (Third Edition). Netherlands: Springer, 1998: 302.
[39]
J. Bruneton. Pharmacognosie, Phytochimie et Plantes Médicinales (3ème Edition). Paris: Médicales Internationales et Tec & Doc, 1999: 1120.
[40]
W.C. Evans, E. Trease. Pharmacognosy E-Book. Elsevier Health Sciences, 2009.
[41]
V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 1999: 152–177.
DOI
[42]

M. Gaytan-Martínez, A.H. Cabrera-Ramírez, E. Morales-Sanchez et al. Effect of nixtamalization process on the content and composition of phenolic compounds and antioxidant activity of two sorghums varieties. Journal of Cereal Science, 2017, 77: 1−8. https://doi.org/10.1016/j.jcs.2017.06.014

[43]

I., Kosalec, M. Bakmaz, S. Pepeljnjak, et al. Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acta Pharmaceutica, 2004, 54(1): 65−72.

[44]

R.B. Broadhurst, W.T. Jones. Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 1978, 29(9): 788−794. https://doi.org/10.1002/jsfa.2740290908

[45]

F.T. Thema, E. Manikandan, M.S. Dhlamini, et al. Green synthesis of ZnO Nanoparticles via Agathosma betulina natural extract. Materials Letters, 2015, 161: 124−127. https://doi.org/10.1016/j.matlet.2015.08.052

[46]

T.U. Doan Thi, T.T. Nguyen, Y.D. Thi, et al. Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Advances, 2020, 10: 23899−23907. https://doi.org/10.1039/d0ra04926c

[47]

H. Huang, and X. Yang. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydrate Research, 2004, 339(15): 2627−2631. https://doi.org/10.1016/j.carres.2004.08.005

[48]

M.M.R. Mollick, D. Rana, S.K. Dash, et al. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arabian Journal of Chemistry, 2019, 12(8): 2572−2584. https://doi.org/10.1016/j.arabjc.2015.04.033

[49]

Y. Shin, I-T. Bae, B.W. Arey, et al. Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. The Journal of Physical Chemistry C, 2008, 112(13): 4844−4848. https://doi.org/10.1021/jp710767w

[50]

C. Fong, D. Wells, I. Krodkiewska, et al. New role for urea as a surfactant headgroup promoting self-assembly in water. Chemistry of Materials, 2006, 18: 594. https://doi.org/10.1021/cm0522681

[51]

M.S. Blois. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181: 1199−1200. https://doi.org/10.1038/1811199a0

[52]
R. Subramanian, P. Subbramaniyan, V. Raj. Double bypasses soxhlet apparatus for extraction of piperine from Piper nigrum. Arabian Journal of Chemistry. 2011, 9: S537–S540.
DOI
[53]
R. M.Samarth, M. Panwar, A. Soni et al., Evaluation of antioxidant and radical scavenging activities of certain radioprotective plant extract. Food Chemistry, 2008, 106: 868–873.
DOI
[54]
S nchez-Moreno, C., Larrauri, J. A., Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 1998, 76(2): 270276.
DOI
[55]

Y.M. Choi, D.O. Noh, S.Y. Cho et al. Antioxidant and antimicrobial activities of propolis from several regions of Korea. Lebensmittel-Wissenschaft &Technologie LWT, 2006, 39: 756−761. https://doi.org/10.1016/j.lwt.2005.05.015

[56]

A.G. Ponce, R. Fritz, C. del Valle, et al. Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT - Food Science and Technology, 2003, 36(7): 679−684. https://doi.org/10.1016/S0023-6438(03)00088-4

[57]
Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-Tenth Edition M02-A10. 2009.
[58]
M.J. Rodríguez Vaquero, M.R. Alberto, M.C. Manca de Nadra. Influence of phenolic compounds from wines on the growth of Listeria monocytogenes. Food Control, 2007, 18(5): 587–593.
DOI
[59]

F. Konan Kouadio, N.K. Guessennd, O. Karamoko, et al. Action antibactérienne de l’extrait éthanolique 70% de Clerodendrum splendens (G. Don) (Verbenacae) sur des souches bactériennes isolées de selles chez des enfants diarrhéiques. International Journal of Biological and Chemical Sciences, 2013, 7(3): 1332−1337. https://doi.org/10.4314/ijbcs.v7i3.38

[60]
A.A. Mamonier. Introduction aux techniques d’étude des antibiotiques. In: Bactériologie Médicale, Technique Usuelles. Doin: Paris, 1990: 227–236.
[61]

M. Barbouchi, K. Elamrani, M. El Idrissi, et al. A comparative study on phytochemical screening, quantification of phenolic contentsand antioxidant properties of different solvent extracts from various parts of Pistacia lentiscus L. Journal of King Saud University – Science, 2018, 32(1): 12. https://doi.org/10.1016/j.jksus.2018.05.010

[62]
A. Maalej, W. Elloumi, I. Angelov, et al. Pistacia lentiscus by-product as a promising source of phenolic compounds and carotenoids: Purification, biological potential and binding properties. Food and Bioproducts Processing, 2021, 126: 245–255.
DOI
[63]
A. Cherbal, M. Kebieche, K. Madani, et al. Extraction and valorization of phenolic compounds of leaves of Algerian Pistacia lentiscus. Asian Journal of Plant Sciences, 2012, 11(3): 131–136.
DOI
[64]

S. Remila, D. Atmani-Kilani, S. Delemasure, et al. Antioxidant, cytoprotective, anti-inflammatory and anticancer activities of Pistacia lentiscus (Anacardiaceae) leaf and fruit extracts. European Journal of Integrative Medicine, 2015, 7(3): 274−286. https://doi.org/10.1016/j.eujim.2015.03.009

[65]

H. Bouriche, A. Saidi, A. Ferradji, et al. Anti-inflammatory and immunomodulatory properties of Pistatia lentiscus extracts. Journal of Applied Pharmaceutical Science, 2016, 6(7): 140−146. https://doi.org/10.7324/JAPS.2016.60721

[66]

A. Bampouli, K. Kyriakopoulou, G. Papaefstathiou, et al. Evaluation of total antioxidant potential of Pistacia lentiscus var. chia leaves extracts using UHPLC–HRMS. Journal of Food Engineering, 2015, 167: 25−31. https://doi.org/10.1016/j.jfoodeng.2014.10.021

[67]

S. Bakli, D. Harzallah, A. Zerroug, et al. Antimicrobial and antioxidant activities of flavonoids extracted from Pistacia lentiscus L., leaves. Journal of Drug Delivery &Therapeutics, 2020, 10(1-s): 83−89. https://doi.org/10.22270/jddt.v10i1-s.3895

[68]
M. Cheurfa, R. Allem, Study of hypocholesterolemic activity of Algerian Pistacia lentiscus leaves extracts in vivo. Revista Brasileira de Farmacognosia, 2015, 25(2): 142–144.
DOI
[69]
J.-J. Macheix, A. Fleuriet, C. Jay-Allemand. Les Composés Phénoliques des Végétaux. Lausanne: Presses Polytechniques et Universitaires Romandes éd., 2005: 192.
[70]

D. Atmani, N. Chaher, M. Berboucha, et al. Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chemistry, 2009, 112(2): 303−309. https://doi.org/10.1016/j.foodchem.2008.05.077

[71]

G.T. Anand, D. Renuka, R. Ramesh, et al. Green synthesis of ZnO nanoparticle using Prunus dulcis (almond gum) for antimicrobial and supercapacitor applications. Surfaces and Interfaces, 2019, 17: 100376. https://doi.org/10.1016/j.surfin.2019.100376

[72]

J. Osuntokun, C. Damian, E. Onwudiwe, et al. Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea L. var. italica and the photocatalytic activity. Green Chemistry Letters and Reviews, 2019, 12(4): 444−457. https://doi.org/10.1080/17518253.2019.1687761

[73]
A.J. Rush Jr., M.B. First, D. Blacker. Handbook of Psychiatric Measures. American Psychiatric Publishing, Inc, 2008: 86.
[74]
R.M. Silverstein, F.X. Webster, D.J. Kiemle, et al. Spectrometric Identification of Organic Compounds. John wiley and sons, 2014: 86.
[75]
R. Myriam. Aide au repérage des Nanomatériaux en Entreprise. INRS, 2014: 17–35.
[76]

A.C. Taş, P.J. Majewski, F. Aldinger. Chemical preparation of pure and strontium- and/or magnesium‐doped lanthanum gallate powders. Journal of the American Ceramic Society, 2000, 83(12): 2954−2960. https://doi.org/10.1111/j.1151-2916.2000.tb01666.x

[77]

R. Kumar, G. Kumar, A. Umar. ZnO nano-mushrooms for photocatalytic degradation of methyl orange. Materials Letters, 2013, 97: 100−103. https://doi.org/10.1016/j.matlet.2013.01.044

[78]

A.B. Lavand, Y.S. Malghe. Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite. Journal of Saudi Chemical Society, 2015, 19: 471−478. https://doi.org/10.1016/j.jscs.2015.07.001

[79]
M. Jabeena, M.A. Iqbala, R.V. Kumarb, et al. Chemical synthesis of zinc oxide nanorods forenhanced hydrogen gas sensing. Chinese Physics B, 2014, 23(1): 018504.
DOI
[80]
P. Scherrer. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In: Kolloidchemie Ein Lehrbuch. Berlin, Heidelberg: Springer, 1912: 387–409.
DOI
[81]

D. Belhachat, F. Aid, L. Mekimene, et al. Phytochemical screening and in vitro antioxidant activity of Pistacia lentiscus berries ethanolic extract growing in Algeria. Mediterranean Journal of Nutrition and Metabolism, 2017, 10: 273−285. https://doi.org/10.3233/MNM-17169

[82]

R. Hemma, S. Belhadj, C. Ouahchia, et al. Antioxidant activity of Pistacia lentiscus methanolic extracts. Revue Agrobiologia, 2018, 8(1): 845−852.

[83]
A.I. Ghenima, M. Idir, M.G. Nadjet, et al. In vitro evaluation of biological activities of Pistacia lentiscus aqueous extract. International Journal of Pharmacy and Pharmaceutical Sciences, 2015, 7(11): 133–139.
[84]

K.E. Heim, A.R. Tagliaferro, D.J. Bobilya. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry, 2002, 13(10): 572−584. https://doi.org/10.1016/S0955-2863(02)00208-5

[85]

N.T. Erol, F. Sarı, Y.S. Velioglu. Polyphenols, alkaloids and antioxidant activity of different grades Turkish black tea. GIDA, 2010, 35(3): 161−168.

[86]

A.d.P. Bidie, B.B. N’Guessan, A.F. Yapo, et al. Activités antioxydantes de dix plantes medicinales de la pharmacopée ivoirienne. Sciences &Nature, 2011, 8(1): 1−11.

[87]

T. Andzi Barhé, G.R. Feuya Tchouya. Comparative study of the anti-oxidant activity of the total polyphenols extracted from Hibiscus sabdariffa L., Glycine max L. Merr., yellow tea and red wine through reaction with DPPH free radicals. Arabian Journal of Chemistry, 2016, 9(1): 1−8. https://doi.org/10.1016/j.arabjc.2014.11.048

[88]

S. Roy, J.-W. Rhim. Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin. Food Hydrocolloids, 2019, 90: 500−507. https://doi.org/10.1016/j.foodhyd.2018.12.056

[89]
J.J. Fleurette, M. Freney, E. Reverdy. Antiseptie et désinfection. Paris: ESKA Editions, 1995.
[90]

M.S. Ali-Shtayeh, R.M.-R. Yaghmour, Y.R. Faidi, et al. Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. Journal of Ethno Pharmacology, 1998, 60: 265−271. https://doi.org/10.1016/s0378-8741(97)00153-0

[91]

G. Sharmila, C. Muthukumaran, K. Sandiya, et al. Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. Journal of Nanostructure in Chemistry, 2018, 8: 293−299. https://doi.org/10.1007/s40097-018-0271-8

[92]

M. Iswarya, P. Sudha, V. Kalaiselvi, et al. Solanum nigrum leaf extract capped synthesis of ZnO nanoparticles. Journal of Environmental Nanotechnology, 2020, 9: 37−41. https://doi.org/10.13074/jent.2020.12.204424

[93]

J. Vidic, S. Stankic, F. Haque, et al. Selective antibacterial effects of mixed ZnMgO nanoparticles. Journal of Nanoparticle Research, 2013, 15(5): 1595. https://doi.org/10.1007/s11051-013-1595-4

[94]

N.H. Aysa, H.D. Salman. Antibacterial activity of modified zinc oxide nanoparticles against Pseudomonas aeruginosa isolates of burn infections. World Scientific News, 2016, 33: 1−14.

[95]

U. Kadiyala, E.S. Turali-Emre, J.H. Bahng, et al. Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA). Nanoscale, 2018, 10: 4927−4939. https://doi.org/10.1039/C7NR08499D

[96]

H. Zhang, G. Chen. Potent antibacterial activities of Ag/TiO2 nanocomposite: powders synthesized by a one-pot sol−gel method. Environmental Science &Technology, 2009, 43(8): 2905−2910. https://doi.org/10.1021/es803450f

[97]

K. Kairyt, A. Kadys, Z. Luksiene. Antibacterial and antifungal activity of photo activated ZnO nanoparticles in suspension. Journal of Photochemistry and Photobiology B:Biology, 2013, 128: 78−84. https://doi.org/10.1016/j.jphotobiol.2013.07.017

[98]

A. Sirelkhatim, S. Mahmud, A. Seeni, et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano Micro Letters, 2015, 7: 219−242. https://doi.org/10.1007/s40820-015-0040-x

[99]

Y.-W. Huang, C.-H. Wu, R.S. Aronstam. Toxicity of transition metal oxide nanoparticles: Recent insights from in vitro studies. Materials, 2010, 3(10): 4842−4859. https://doi.org/10.3390/ma3104842

[100]

Z.B. Huang, X. Zheng, D.H. Yan, et al. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir, 2008, 24(8): 4140−4144. https://doi.org/10.1021/la7035949

[101]

M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, et al. Antibacterial properties of nanoparticles. Trends in Biotechnology, 2012, 30(10): 499−511. https://doi.org/10.1016/j.tibtech.2012.06.004

[102]
A. Kumar, A.K. Pandey, S.S. Singh et al. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biology and Medicine, 2011, 51: 1872–1881.
DOI
[103]

Z. Xia, J. Min, S. Zhou, et al. Photocatalytic performance and antibacterial mechanism of Cu/Ag-molybdate powder material. Ceramics International, 2021, 47(9): 12667−12679. https://doi.org/10.1016/j.ceramint.2021.01.127

[104]

Y. Liu, L. He, A. Mustapha, et al. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology, 2009, 107(4): 1193−1201. https://doi.org/10.1111/j.1365-2672.2009.04303.x

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 13 September 2023
Revised: 15 October 2023
Accepted: 13 November 2023
Published: 10 January 2024
Issue date: June 2024

Copyright

© The Author(s) 2024.

Acknowledgements

Acknowledgements

The authors thanks physics departement of Tlemcen University, Algeria. Also Prof. LAOUINI Sallah Eddine, Laboratory of Valorization and Technology of Saharian Resources, Departement of Process Engineering, Faculty of Technology, Hamma Lakhdar University, El-Oued, 39000 Algeria.

Rights and permissions

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return