Journal Home > Volume 15 , Issue 4

Ultrasmall silica nanoparticles, as one type of nanocarriers featured by excellent biocompatibility and efficient renal clearance, are of rapidly growing interest for biomedical applications, particularly in oncology. Undesirably, the intrinsic issues of low site-targeting capability, short circulation time, and limited functionalities of ultrasmall silica nanoparticles severely impede their widespread application in the biomedical domain. Recent researches on surface modification for improved physical properties, enhanced site-specific abilities and multimodality imaging have been continuously emerging, which provide the prerequisite for possible application in the integration of diagnosis and treatment. On this basis, this review summarizes the most widely used synthesis approaches for well-ordered ultrasmall silica nanoparticles with uniform diameter and tunable pore size, and simultaneously highlights the diverse surface functionalization for versatile purposes and biomedical applications, including site-targeted delivery of drugs, stimuli-responsive cargo release, real-time bioimaging as well as cancer theranostics. Finally, the challenges of ultrasmall silica nanoparticles in oncology are further discussed with the aim of promoting their future clinical application.


menu
Abstract
Full text
Outline
About this article

Design of Ultrasmall Silica Nanoparticles for Versatile Biomedical Application in Oncology: A Review

Show Author's information Cheng Zhang1,§Liyuan Zhang1,§Yuanyuan Ma2( )Shenghong Ju2( )Wenpei Fan1( )
State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
Jiangsu Key Lab of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China

§Cheng Zhang and Liyuan Zhang contributed equally to this work.

Abstract

Ultrasmall silica nanoparticles, as one type of nanocarriers featured by excellent biocompatibility and efficient renal clearance, are of rapidly growing interest for biomedical applications, particularly in oncology. Undesirably, the intrinsic issues of low site-targeting capability, short circulation time, and limited functionalities of ultrasmall silica nanoparticles severely impede their widespread application in the biomedical domain. Recent researches on surface modification for improved physical properties, enhanced site-specific abilities and multimodality imaging have been continuously emerging, which provide the prerequisite for possible application in the integration of diagnosis and treatment. On this basis, this review summarizes the most widely used synthesis approaches for well-ordered ultrasmall silica nanoparticles with uniform diameter and tunable pore size, and simultaneously highlights the diverse surface functionalization for versatile purposes and biomedical applications, including site-targeted delivery of drugs, stimuli-responsive cargo release, real-time bioimaging as well as cancer theranostics. Finally, the challenges of ultrasmall silica nanoparticles in oncology are further discussed with the aim of promoting their future clinical application.

Keywords: bioimaging, cancer theranostics, ultrasmall silica nanoparticles, multifunctional modification, site-targeted delivery, stimuli-responsive drug release

References(107)

[1]

Y. Wang, Q.F. Zhao, N. Han, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine:Nanotechnology,Biology and Medicine, 2015, 11(2): 313−327. https://doi.org/10.1016/j.nano.2014.09.014

[2]

W.C.W. Chan. Nanomedicine 2.0. Accounts of chemical research, 2017, 50(3): 627−632. https://doi.org/10.1021/acs.accounts.6b00629

[3]

D. Peer, J.M. Karp, S. Hong, et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2: 751−760. https://doi.org/10.1038/nnano.2007.387

[4]

P. Biswas, S.A. Polash, D. Dey, et al. Advanced implications of nanotechnology in disease control and environmental perspectives. Biomedicine &Pharmacotherapy, 2023, 158: 114172. https://doi.org/10.1016/j.biopha.2022.114172

[5]

J.G. Croissant, Y. Fatieiev, N.M. Khashab. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Advanced Materials, 2017, 29(9): 1604634. https://doi.org/10.1002/adma.201604634

[6]

M.T. Zhu, S. Perrett, G.J. Nie. Understanding the particokinetics of engineered nanomaterials for safe and effective therapeutic applications. Small, 2013, 9(9-10): 1619−1634. https://doi.org/10.1002/smll.201201630

[7]

E. Phillips, O. Peñate-Medina, P. Zanzonico, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Science Translational Medicine, 2014, 6: e3009524. https://doi.org/10.1126/scitranslmed.3009524

[8]

K. Zarschler, L. Rocks, N. Licciardello, et al. Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomedicine:Nanotechnology, Biology and Medicine, 2016, 12(6): 1663−1701. https://doi.org/10.1016/j.nano.2016.02.019

[9]

K. Ma, C. Mendoza, M. Hanson, et al. Control of ultrasmall sub-10 nm ligand-functionalized fluorescent core–shell silica nanoparticle growth in water. Chemistry of Materials, 2015, 27(11): 4119−4133. https://doi.org/10.1021/acs.chemmater.5b01222

[10]

R.A. Sperling, W. J. Parak. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences, 2010, 368(1915): 1333−1383. https://doi.org/10.1098/rsta.2009.0273

[11]

W. Stöber, A. Fink, E. Bohn. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 1968, 26(1): 62−69. https://doi.org/10.1016/0021-9797(68)90272-5

[12]

T. Yokoi, J. Wakabayashi, Y. Otsuka, et al. Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids. Chemistry of Materials, 2009, 21(15): 3719−3729. https://doi.org/10.1021/cm900993b

[13]

F.J. Carrillo-Pesqueira, R.C. Carrillo-Torres, M.E. Álvarez-Ramos, et al. Synthesis and characterization of silica nanoparticles obtained by additions of amino acids into the stöber reaction. Microscopy and Microanalysis, 2018, 24(S1): 1098−1099. https://doi.org/10.1017/S1431927618005974

[14]

S. Fouilloux, J. Daillant, A. Thill. Single step synthesis of 5–30 nm monodisperse silica nanoparticles: Important experimental parameters and modeling. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 393: 122−127. https://doi.org/10.1016/j.colsurfa.2011.11.009

[15]

X.-D. Wang, Z.-X. Shen, T. Sang, et al. Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. Journal of Colloid and Interface Science, 2010, 341(1): 23−29. https://doi.org/10.1016/j.jcis.2009.09.018

[16]

K. Tadanaga, K. Morita, K. Mori, et al. Synthesis of monodispersed silica nanoparticles with high concentration by the Stöber process. Journal of Sol-Gel Science and Technology, 2013, 68(2): 341−345. https://doi.org/10.1007/s10971-013-3175-6

[17]
C. G. Tan, B. D. Bowen and N. Epstein, Production of monodisperse colloidal silica spheres: Effect of temperature. Journal of Colloid and Interface Science, 1987, 118(1): 290–293. https://www.sciencedirect.com/science/article/pii/0021979787904589
DOI
[18]

H. Pan, Z. Ni, C. Poh, et al. A simple route to growth of silicon nanowires. Journal of Nanoscience and Nanotechnology, 2008, 8(11): 5787−5790. https://doi.org/10.1166/jnn.2008.217

[19]

S.-S. Kim, H.-S. Kim, S. G. Kim, et al. Effect of electrolyte additives on sol-precipitated nano silica particles. Ceramics International, 2004, 30(2): 171−175. https://doi.org/10.1016/S0272-8842(03)00085-3

[20]

Y. He, Y.L. Zhong, F. Peng, et al. One-Pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. Journal of the American Chemical Society, 2011, 133(36): 14192−14195. https://doi.org/10.1021/ja2048804

[21]
Y. Xie, D. Kocaefe, C.Y. Chen, et al., Review of Research on Template Methods in Preparation of Nanomaterials. Journal of Nanomaterials, 2016, 2016: 2302595.
DOI
[22]

A. Firouzi, D. Kumar, L.M. Bull, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science, 1995, 267(5201): 1138−1143. https://doi.org/10.1126/science.7855591

[23]

Y.S. Li, J.L. Shi. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Advanced Materials, 2014, 26(20): 3176−3205. https://doi.org/10.1002/adma.201305319

[24]

K. Nielsch, J. Choi, K. Schwirn, et al. Self-ordering Regimes of porous alumina: the 10 porosity rule. Nano Letters, 2002, 2(7): 677−680. https://doi.org/10.1021/nl025537k

[25]

J. Qi, X.Y. Lai, J.Y. Wang, et al. Multi-shelled hollow micro-/nanostructures. Chemical Society Reviews, 2015, 44(19): 6749−6773. https://doi.org/10.1039/c5cs00344j

[26]

J.-F. Chen, H.-M. Ding, J.-X. Wang, et al. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials, 2004, 25(4): 723−727. https://doi.org/10.1016/S0142-9612(03)00566-0

[27]
M. Fuji, T. Shin, H. Watanabe, et al., Shape-controlled hollow silica nanoparticles synthesized by an inorganic particle template method. Advanced Powder Technology, 2012, 23(5): 562–565.
DOI
[28]

Y. Nakashima, C. Takai, H. Razavi-Khosroshahi, et al. Synthesis of ultra-small hollow silica nanoparticles using the prepared amorphous calcium carbonate in one-pot process. Advanced Powder Technology, 2018, 29(4): 904−908. https://doi.org/10.1016/j.apt.2018.01.006

[29]

T.G. Mason, J.N. Wilking, K. Meleson, et al. Nanoemulsions: formation, structure, and physical properties. Journal of Physics:Condensed Matter, 2007, 19(7): 079001. https://doi.org/10.1088/0953-8984/19/7/079001

[30]

W.T. Yang, X. Wang, S.Y. Song, et al. Syntheses and applications of noble-metal-free CeO2-based mixed-oxide nanocatalysts. Chem, 2019, 5(7): 1743−1774. https://doi.org/10.1016/j.chempr.2019.04.009

[31]

Y.F. Lu. Surfactant-templated mesoporous materials: from inorganic to hybrid to organic. Angewandte Chemie International Edition, 2006, 45(46): 7664−7667. https://doi.org/10.1002/anie.200602489

[32]

M.-C. Chao, H.-P. Lin, D.-S. Wang, et al. Controlling the crystal morphology of mesoporous silica SBA-1. Microporous and Mesoporous Materials, 2005, 83(1): 269−276. https://doi.org/10.1016/j.micromeso.2005.05.007

[33]

C.Z. Wei, L.F. Wang, L.Y. Dang, et al. Bottom-up-then-up-down route for multi-level construction of hierarchical Bi2S3 superstructures with magnetism alteration. Scientific Reports, 2015, 5: 10599. https://doi.org/10.1038/srep10599

[34]

F.L. Chi, B.Y. Guan, B. Yang, et al. Terminating effects of organosilane in the formation of silica cross-linked micellar core−shell nanoparticles. Langmuir, 2010, 26(13): 11421−11426. https://doi.org/10.1021/la100912p

[35]

T. Shimogaki, H. Tokoro, M. Tabuchi, et al. Morphology control of microporous silica particles obtained by gradual injection of reactants. Journal of Sol-Gel Science and Technology, 2015, 76(1): 156−163. https://doi.org/10.1007/s10971-015-3762-9

[36]

K. Ma, U. Werner-Zwanziger, J. Zwanziger, et al. Controlling Growth of Ultrasmall Sub-10 nm Fluorescent Mesoporous Silica Nanoparticles. Chemistry of Materials, 2013, 25(5): 677−691. https://doi.org/10.1021/cm303242h

[37]

S.E. Kim, L. Zhang, K. Ma, et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nature Nanotechnology, 2016, 11(11): 977−985. https://doi.org/10.1038/nnano.2016.164

[38]

F. Chen, K. Ma, M. Benezra, et al. Cancer-targeting ultrasmall silica nanoparticles for clinical translation: Physicochemical structure and biological property correlations. Chemistry of materials :a publication of the American Chemical Society, 2017, 29(20): 8766−8779. https://doi.org/10.1021/acs.chemmater.7b03033

[39]

A. Albanese, P.S. Tang, W.C.W. Chan. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual review of biomedical engineering, 2012, 14: 1−16. https://doi.org/10.1146/annurev-bioeng-071811-150124

[40]

S. Goel, C.A. Ferreira, P. Dogra, et al. Size-optimized ultrasmall porous silica nanoparticles depict vasculature-based differential targeting in triple negative breast cancer. Small, 2019, 15(46): 1903747. https://doi.org/10.1002/smll.201903747

[41]

E. Blanco, H.F. Shen, M. Ferrari. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 2015, 33(9): 941−951. https://doi.org/10.1038/nbt.3330

[42]

Y.-S. Lin, C.L. Haynes. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. Journal of the American Chemical Society, 2010, 132(13): 4834−4842. https://doi.org/10.1021/ja910846q

[43]

M.A. Maurer-Jones, Y.-S. Lin, C.L. Haynes. Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano, 2010, 4(6): 3363−3373. https://doi.org/10.1021/nn9018834

[44]

J.M. Harris, R.B. Chess. Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery, 2003, 2(3): 214−221. https://doi.org/10.1038/nrd1033

[45]

K. Ma, D. Zhang, Y. Cong, et al. Elucidating the mechanism of silica nanoparticle PEGylation processes using fluorescence correlation spectroscopies. Chemistry of Materials, 2016, 28(5): 1537−1545. https://doi.org/10.1021/acs.chemmater.6b00030

[46]

P.G. de Gennes. Polymer solutions near an interface. Adsorption and depletion layers. Macromolecules, 1981, 14: 1637−1644. https://doi.org/10.1021/ma50007a007

[47]

A. Wani, G.H.L. Savithra, A. Abyad, et al. Surface PEGylation of Mesoporous Silica Nanorods (MSNR): Effect on loading, release, and delivery of mitoxantrone in hypoxic cancer cells. Scientific Reports, 2017, 7: 2274. https://doi.org/10.1038/s41598-017-02531-4

[48]

G. Gopalakrishnan, C. Danelon, P. Izewska, et al. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angewandte Chemie International Edition, 2006, 45(33): 5478−5483. https://doi.org/10.1002/anie.200600545

[49]

M.U. Amin, S. Ali, M.Y. Ali, et al. Enhanced efficacy and drug delivery with lipid coated mesoporous silica nanoparticles in cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 165: 31−40. https://doi.org/10.1016/j.ejpb.2021.04.020

[50]

Q. Yan, X.L. Guo, X.L. Huang, et al. Gated mesoporous silica nanocarriers for hypoxia-responsive cargo release. ACS Applied Materials &Interfaces, 2019, 11(27): 24377−24385. https://doi.org/10.1021/acsami.9b04142

[51]

N. Han, Q.F. Zhao, L. Wan, et al. Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance. ACS Applied Materials &Interfaces, 2015, 7(5): 3342−3351. https://doi.org/10.1021/am5082793

[52]

C.L. Zhu, C.H. Lu, X.Y. Song, et al. Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. Journal of the American Chemical Society, 2011, 133(5): 1278−1281. https://doi.org/10.1021/ja110094g

[53]

J. Liu, A. Stace-Naughton, X. Jiang, et al. Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. Journal of the American Chemical Society, 2009, 131(4): 1354−1355. https://doi.org/10.1021/ja808018y

[54]

H.H. Li, Y. Chen, Y.Y. Deng, et al. Effects of surface charge of low molecular weight heparin-modified cationic liposomes on drug efficacy and toxicity. Drug Development and Industrial Pharmacy, 2017, 43(7): 1163−1172. https://doi.org/10.1080/03639045.2017.1301948

[55]

N. Bertrand, J. Wu, X. Xu, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews, 2014, 66: 2−25. https://doi.org/10.1016/j.addr.2013.11.009

[56]

U. Prabhakar, H. Maeda, R.K. Jain, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Research, 2013, 73(8): 2412−2417. https://doi.org/10.1158/0008-5472.Can-12-4561

[57]

Y. Matsumura, H. Maeda. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs1. Cancer Research, 1986, 46(12_Part_1): 6387−6392.

[58]

M. Benezra, O. Penate-Medina, P.B. Zanzonico, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. The Journal of Clinical Investigation, 2011, 121(7): 2768−2780. https://doi.org/10.1172/JCI45600

[59]

F. Chen, K. Ma, B. Madajewski, et al. Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nature Communications, 2018, 9(1): 4141. https://doi.org/10.1038/s41467-018-06271-5

[60]

N. Kamaly, Z.Y. Xiao, P.M. Valencia, et al. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chemical Society Reviews, 2012, 41(7): 2971−3010. https://doi.org/10.1039/c2cs15344k

[61]

G. Bao, S. Mitragotri, S. Tong. Multifunctional nanoparticles for drug delivery and molecular imaging. Annual Review of Biomedical Engineering, 2013, 15: 253−282. https://doi.org/10.1146/annurev-bioeng-071812-152409

[62]

X.D. Wang, K.S. Rabe, I. Ahmed, et al. Multifunctional silica nanoparticles for covalent immobilization of highly sensitive proteins. Advanced Materials, 2015, 27(48): 7945−7950. https://doi.org/10.1002/adma.201503935

[63]

X.L. Zhang, F. Chen, M.Z. Turker, et al. Targeted melanoma radiotherapy using ultrasmall (177)Lu-labeled α-melanocyte stimulating hormone-functionalized core-shell silica nanoparticles. Biomaterials, 2020, 241: 119858. https://doi.org/10.1016/j.biomaterials.2020.119858

[64]

F. Chen, K. Ma, L. Zhang, et al. Target-or-clear zirconium-89 labeled silica nanoparticles for enhanced cancer-directed uptake in melanoma: a comparison of radiolabeling strategies. Chemistry of Materials, 2017, 29(19): 8269−8281. https://doi.org/10.1021/acs.chemmater.7b02567

[65]

W.W. Ma, A. Tolcher, C.A. Perez, et al. Abstract CT255: ELU-FRα-1: a study to evaluate ELU001 in patients with solid tumors that overexpress folate receptor alpha (FRα). Cancer Research, 2023, 83(8_Supplement): CT255. https://doi.org/10.1158/1538-7445.am2023-ct255

[66]

J.F. Popplewell, S.J. King, J.P. Day, et al. Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry. Journal of Inorganic Biochemistry, 1998, 69(3): 177−180. https://doi.org/10.1016/s0162-0134(97)10016-2

[67]

Y.-S. Lin, K.R. Hurley, C.L. Haynes. Critical considerations in the biomedical use of mesoporous silica nanoparticles. The Journal of Physical Chemistry Letters, 2012, 3(3): 364−374. https://doi.org/10.1021/jz2013837

[68]

V. Poscher, Y. Salinas. Trends in degradable mesoporous organosilica-based nanomaterials for controlling drug delivery: a mini review. Materials, 2020, 13(17): 3668. https://doi.org/10.3390/ma13173668

[69]

X.L. Li, Y.Y. Chen, X. Zhang, et al. Fabrication of biodegradable auto-fluorescent organosilica nanoparticles with dendritic mesoporous structures for pH/redox-responsive drug release. Materials Science &Engineering:C, 2020, 112: 110914. https://doi.org/10.1016/j.msec.2020.110914

[70]

J.M. Li, F. Liu, Q. Shao, et al. Enzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleus-targeted drug molecules and real-time intracellular fluorescence imaging of tumor cells. Advanced Healthcare Materials, 2014, 3(8): 1230−1239. https://doi.org/10.1002/adhm.201300613

[71]

T. Doura, T. Nishio, F. Tamanoi, et al. Relationship between the glutathione-responsive degradability of thiol-organosilica nanoparticles and the chemical structures. Journal of Materials Research, 2019, 34(7): 1266−1278. https://doi.org/10.1557/jmr.2018.501

[72]

S.P. Hadipour Moghaddam, J. Saikia, M. Yazdimamaghani, et al. Redox-responsive polysulfide-based biodegradable organosilica nanoparticles for delivery of bioactive agents. ACS Applied Materials &Interfaces, 2017, 9(25): 21133−21146. https://doi.org/10.1021/acsami.7b04351

[73]

J.G. Croissant, Y. Fatieiev, K. Julfakyan, et al. Biodegradable oxamide-phenylene-based mesoporous organosilica nanoparticles with unprecedented drug payloads for delivery in cells. Chemistry A European Journal, 2016, 22(42): 14806−14811. https://doi.org/10.1002/chem.201601714

[74]

Y. Fatieiev, J.G. Croissant, K. Julfakyan, et al. Enzymatically degradable hybrid organic–inorganic bridged silsesquioxane nanoparticles for in vitro imaging. Nanoscale, 2015, 7(37): 15046−15050. https://doi.org/10.1039/c5nr03065j

[75]

I. Teasdale, O. Brüggemann. Polyphosphazenes: Multifunctional, biodegradable vehicles for drug and gene delivery. Polymers, 2013, 5(1): 161−187. https://doi.org/10.3390/polym5010161

[76]

B.R. Smith, S.S. Gambhir. Nanomaterials for in vivo imaging. Chemical Reviews, 2017, 117(3): 901−986. https://doi.org/10.1021/acs.chemrev.6b00073

[77]

A.M. Derfus, W.C.W. Chan, S.N. Bhatia. Probing the cytotoxicity of semiconductor quantum dots. Nano Letters, 2004, 4(1): 11−18. https://doi.org/10.1021/nl0347334

[78]

C. Kirchner, T. Liedl, S. Kudera, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Letters, 2005, 5(2): 331−338. https://doi.org/10.1021/nl047996m

[79]

C. Eggeling, A. Volkmer, C.A. Seidel. Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. ChemPhysChem, 2005, 6(5): 791−804. https://doi.org/10.1002/cphc.200400509

[80]

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, et al. Quantum dots versus organic dyes as fluorescent labels. Nature Methods, 2008, 5(9): 763−775. https://doi.org/10.1038/nmeth.1248

[81]

M. Rosso-Vasic, E. Spruijt, Z. Popović, et al. Amine-terminated silicon nanoparticles: Synthesis, optical properties and their use in bioimaging. Journal of Materials Chemistry, 2009, 19(33): 5926. https://doi.org/10.1039/b902671a

[82]

X. Cheng, S.B. Lowe, P.J. Reece, et al. Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chemical Society Reviews, 2014, 43(8): 2680−2700. https://doi.org/10.1039/c3cs60353a

[83]

N. Licciardello, S. Hunoldt, R. Bergmann, et al. Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice. Nanoscale, 2018, 10(21): 9880−9891. https://doi.org/10.1039/c8nr01063c

[84]

H. Kobayashi, M.R. Longmire, M. Ogawa, et al. Multiplexed imaging in cancer diagnosis: applications and future advances. The Lancet Oncology, 2010, 11(6): 589−595. https://doi.org/10.1016/S1470-2045(10)70009-7

[85]

V. Tolmachev, I. Velikyan, M. Sandström, et al. A HER2-binding Affibody molecule labelled with 68Ga for PET imaging: direct in vivo comparison with the 111In-labelled analogue. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37: 1356−1367. https://doi.org/10.1007/s00259-009-1367-7

[86]
J.E. Mortimer, J.M. Park, M.I. Carroll, et al. Correlation of 64Cu-DOTA-trastuzumab positron emission tomo graphy (PET) imaging with HER2 status by immunohistochemistry (IHC). Journal of Clinical Oncology, 2013, 31(15 suppl): 618–618.
DOI
[87]

J.E. Mortimer, J.R. Bading, D.M. Colcher, et al. Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using 64Cu-DOTA-trastuzumab PET. Journal of Nuclear Medicine, 2013, 55(1): 23−29. https://doi.org/10.2967/jnumed.113.122630

[88]

E.C. Dijkers, T.H. Oude Munnink, J.G. Kosterink, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clinical Pharmacology &Therapeutics, 2010, 87(5): 586−592. https://doi.org/10.1038/clpt.2010.12

[89]

F.F.E. Kohle, J.A. Hinckley, U.B. Wiesner. Dye encapsulation in fluorescent core–shell silica nanoparticles as probed by fluorescence correlation spectroscopy. The Journal of Physical Chemistry C, 2019, 123(15): 9813−9823. https://doi.org/10.1021/acs.jpcc.9b00297

[90]

A.E. Chiou, J.A. Hinckley, R. Khaitan, et al. Fluorescent silica nanoparticles to label metastatic tumor cells in mineralized bone microenvironments. Small, 2021, 17(15): e2001432. https://doi.org/10.1002/smll.202001432

[91]

F. Chen, B. Madajewski, K. Ma, et al. Molecular phenotyping and image-guided surgical treatment of melanoma using spectrally distinct ultrasmall core-shell silica nanoparticles. Science Advances, 2019, 5(12): eaax5208. https://doi.org/10.1126/sciadv.aax5208

[92]

M.J. Roberts, M.D. Bentley, J.M. Harris. Chemistry for peptide and protein PEGylation. Advanced Drug Delivery Reviews, 2002, 54(4): 459−476. https://doi.org/10.1016/s0169-409x(02)00022-4

[93]

K. Ma, U. Wiesner. Modular and orthogonal post-pegylation surface modifications by insert ion enabling penta-functional ultrasmall organic-silica hybrid nanoparticles. Chemistry of Materials, 2017, 29(16): 6840−6855. https://doi.org/10.1021/acs.chemmater.7b02009

[94]

Y. Gao, S. Gu, Y.Y. Zhang, et al. The architecture and function of monoclonal antibody-functionalized mesoporous silica nanoparticles loaded with mifepristone: Repurposing abortifacient for cancer metastatic chemoprevention. Small, 2016, 12(19): 2595−2608. https://doi.org/10.1002/smll.201600550

[95]

W. Qu, B. Meng, Y. Yu, et al. EpCAM antibody-conjugated mesoporous silica nanoparticles to enhance the anticancer efficacy of carboplatin in retinoblastoma. Materials Science &Engineering C, 2017, 76: 646−651. https://doi.org/10.1016/j.msec.2017.03.036

[96]

W. Ngamcherdtrakul, T. Sangvanich, M. Reda, et al. Lyophilization and stability of antibody-conjugated mesoporous silica nanoparticle with cationic polymer and PEG for siRNA delivery. International Journal of Nanomedicine, 2018, 13: 4015−4027. https://doi.org/10.2147/IJN.S164393

[97]

Y. Zhang, J. Guo, X.L. Zhang, et al. Antibody fragment-armed mesoporous silica nanoparticles for the targeted delivery of bevacizumab in ovarian cancer cells. International Journal of Pharmaceutics, 2015, 496(2): 1026−1033. https://doi.org/10.1016/j.ijpharm.2015.10.080

[98]

H.J. Yan, Y. You, X.J. Li, et al. Preparation of RGD peptide/folate acid double-targeted mesoporous silica nanoparticles and its application in human breast cancer MCF-7 cells. Frontiers in Pharmacology, 2020, 11: 898. https://doi.org/10.3389/fphar.2020.00898

[99]

H. Xu, Z. Wang, Y. Li, et al. Preparation and characterization of a dual-receptor mesoporous silica nanoparticle–hyaluronic acid–RGD peptide targeting drug delivery system. RSC Advances, 2016, 6(46): 40427−40435. https://doi.org/10.1039/c6ra03113g

[100]

L. Pascual, C. Cerqueira-Coutinho, A. García-Fernández, et al. MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. Nanomedicine:Nanotechnology, Biology and Medicine, 2017, 13(8): 2495−2505. https://doi.org/10.1016/j.nano.2017.08.006

[101]

Y. Shen, M. Li, T. Liu, et al. A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells. International Journal of Nanomedicine, 2019, 14: 4029−4044. https://doi.org/10.2147/IJN.S201688

[102]

Y. Yang, W. Zhao, W. Tan, et al. An efficient cell-targeting drug delivery system based on aptamer-modified mesoporous silica nanoparticles. Nanoscale Research Letters, 2019, 14(1): 390. https://doi.org/10.1186/s11671-019-3208-3

[103]

W. Qu, B. Meng, Y. Yu, et al. Folic acid-conjugated mesoporous silica nanoparticles for enhanced therapeutic efficacy of topotecan in retina cancers. International Journal of Nanomedicine, 2018, 13: 4379−4389. https://doi.org/10.2147/IJN.S142668

[104]

Y.-Q. Huang, L.-J. Sun, R. Zhang, et al. Hyaluronic acid nanoparticles based on a conjugated oligomer photosensitizer: Target-specific two-photon imaging, redox-sensitive drug delivery, and synergistic chemo-photodynamic therapy. ACS Applied Bio Materials, 2019, 2(6): 2421−2434. https://doi.org/10.1021/acsabm.9b00130

[105]

S. Colombo, M. Beck-Broichsitter, J.P. Bøtker, et al. Transforming nanomedicine manufacturing toward quality by design and microfluidics. Advanced Drug Delivery Reviews, 2018, 128: 115−131. https://doi.org/10.1016/j.addr.2018.04.004

[106]

M.J. Mitchell, M.M. Billingsley, R.M. Haley, et al. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 2021, 20(2): 101−124. https://doi.org/10.1038/s41573-020-0090-8

[107]

S. Đorđević, M.M. Gonzalez, I. Conejos-Sánchez, et al. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Delivery and Translational Research, 2022, 12(3): 500−525. https://doi.org/10.1007/s13346-021-01024-2

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 September 2023
Revised: 17 October 2023
Accepted: 19 October 2023
Published: 20 November 2023
Issue date: December 2023

Copyright

© The Author(s) 2023.

Acknowledgements

Acknowledgement

This study is financially supported by the National Natural Science Foundation of China (92059202, 82330060, 82302273), the Funding of Double First-Rate Discipline Innovation Team of China Pharmaceutical University (CPUQNJC22_04), and the Fundamental Research Funds for the Central Universities of China (2632023TD01).

Rights and permissions

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return