Journal Home > Volume 15 , Issue 3

Peels of Hijau lumut banana (HLB) (Musa paradisiaca L.) are a form of organic waste that has not been widely utilized. This study was conducted to determine the antibacterial activity of ethyl acetate extract of HLB peels and that of their nanoparticles at various concentrations of chitosan against Staphylococcus aureus and Escherichia coli. It was also aimed to characterize the most active nanoparticles. Extraction of HLB peels was carried out by maceration and partitioning methods. Ionic gelation was applied to synthesize nanoparticles using chitosan crosslinked with sodium tripolyphosphate (NaTPP). Antibacterial activity assay was carried out by the agar diffusion well method. The nanoparticles were characterized by the following analyses: determination of their size distribution and zeta potential by a particle size analyzer, and of their morphology by scanning electron microscopy and transmission electron microscopy, phytochemical screening to determine secondary metabolite contents, determination of retention factor values and staining patterns by thin-layer chromatography, ultraviolet–visible (UV–Vis) spectrophotometry to confirm nanoparticle formation, and determination of the characteristics of their functional groups by Fourier transform infrared spectrophotometry. The antibacterial activity assay showed that the nanoparticles exhibited a stronger antibacterial activity than the ethyl acetate extract, with chitosan at a concentration of 1% being associated with the highest activity. In terms of their morphology, the nanoparticles were amorphous (non-uniform), while they absorbed UV–Vis at 385 nm and had the following functional groups: —OH, —NH, —CH, and P—O. This study revealed that these nanoparticles exert antibacterial effects and the secondary metabolites were encapsulated via crosslinking between chitosan and NaTPP.


menu
Abstract
Full text
Outline
About this article

Antibacterial Activity and Characterization of Chitosan Nanoparticles Prepared from Hijau Lumut Banana (Musa paradisiaca L.) Peel Ethyl Acetate Extract

Show Author's information Wiwik Susanah Rita( )Ni Kadek Linda Erika YantiI. Made Dira Swantara
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Udayana University, Bali, Indonesia

Abstract

Peels of Hijau lumut banana (HLB) (Musa paradisiaca L.) are a form of organic waste that has not been widely utilized. This study was conducted to determine the antibacterial activity of ethyl acetate extract of HLB peels and that of their nanoparticles at various concentrations of chitosan against Staphylococcus aureus and Escherichia coli. It was also aimed to characterize the most active nanoparticles. Extraction of HLB peels was carried out by maceration and partitioning methods. Ionic gelation was applied to synthesize nanoparticles using chitosan crosslinked with sodium tripolyphosphate (NaTPP). Antibacterial activity assay was carried out by the agar diffusion well method. The nanoparticles were characterized by the following analyses: determination of their size distribution and zeta potential by a particle size analyzer, and of their morphology by scanning electron microscopy and transmission electron microscopy, phytochemical screening to determine secondary metabolite contents, determination of retention factor values and staining patterns by thin-layer chromatography, ultraviolet–visible (UV–Vis) spectrophotometry to confirm nanoparticle formation, and determination of the characteristics of their functional groups by Fourier transform infrared spectrophotometry. The antibacterial activity assay showed that the nanoparticles exhibited a stronger antibacterial activity than the ethyl acetate extract, with chitosan at a concentration of 1% being associated with the highest activity. In terms of their morphology, the nanoparticles were amorphous (non-uniform), while they absorbed UV–Vis at 385 nm and had the following functional groups: —OH, —NH, —CH, and P—O. This study revealed that these nanoparticles exert antibacterial effects and the secondary metabolites were encapsulated via crosslinking between chitosan and NaTPP.

Keywords: nanoparticle, chitosan, antibacterial activity, Staphylococcus aureus, banana peel, Escherichia coli

References(38)

[1]

S.W. Maya, G. Citraningtyas, W.A. Lolo. Phytochemical screening and antipyretic effect of stem juice from kepok banana (Musa paradisiaca L) on white male rats stain wistar (Rattus norvegicus) induced with DTP-Hb. Pharmacon, 2015, 4(1): 21−29.

[2]

W.S. Rita, N.K.L.E. Yanti,. W.G. Gunawan. Uji aktivitas antibakteri kulit Pisang Hijau Lumut (Musa x paradisiaca L.) terhadap bakteri Staphylococcus aureus dan Escherichia coli serta identifikasi golongan senyawa metabolit sekunder. Jurnal Kimia (Journal of Chemistry), 2021, 15(2): 131−139. https://doi.org/10.24843/JCHEM.2021.v15.i02.p02

[3]
W.S. Rita, I.M.D. Swantara, I.A.R.A. Asih, et al. Total flavonoid and phenolic contents of n-butanol extract of Samanea saman leaf and the antibacterial activity towards Escherichia coli and Staphylococcus aureus. AIP Conference Proceedings, 2016, 1718(1): 060005.
DOI
[4]

R.L Vifta, F.P. Luhurningtyas. Nanoparticle from Medinilla speciosa with Various of encapsulating agent and their antioxidant activities using ferric reducing assay. Indonesian Journal of Cancer Chemoprevention, 2020, 11(1): 22−29. https://doi.org/10.14499/indonesianjcanchemoprev11iss1pp22-29

[5]

A.P. Bhosale, A. Patil, M. Swami. Herbosomes as a novel drug delivery system for absorption enhancement. World Journal of Pharmacy and Pharmaceutical Sciences, 2016, 5: 345−355.

[6]

R. Sharma, J. Hazra, P.K. Prajapati. Nanophytomedicines: A novel approach to improve drug delivery and pharmacokinetics of herbal medicine. Bio Bulletin, 2017, 3: 132−135.

[7]

N. Nurmalia, Y. Sedarnawati, Y. Sri. Sintesis nanopartikel ekstrak kulit manggis merah Dan kajian sifat fungsional produk enkapsulasinya. Jurnal Teknologi Dan Industri Pangan, 2017, 28(1): 27−35. https://doi.org/10.6066/jtip.2017.28.1.27

[8]

A. Verma, S.P. Gautam, K.K. Bansal, et al. Review green nanotechnology: Advancement in phytoformulation research. Medicines, 2019, 6(1): E39. https://doi.org/10.3390/medicines6010039

[9]

S. Nyoni, E. Muzenda, N. Mukaratirwa-Muchanyereyi. Characterization and evaluation of antibacterial activity of silver nanoparticles prepared from sclerocarya birrea stem bark and leaf extracts. Nano Biomedicine and Engineering, 2019, 11(1): 28−34. https://doi.org/10.5101/nbe.v11i1.p28-34

[10]

S. Kumar, V. Sharma, J.K. Pradhan, et al. Structural, optical and antibacterial response of CaO nanoparticles synthesized via direct precipitation technique. Nano Biomedicine and Engineering, 2021, 13(2): 172−178. https://doi.org/10.5101/nbe.v13i2.p172-178

[11]

A. Rampino, M. Borgogna, P. Blasi, et al. Chitosan nanoparticles: Preparation, size evolution and stability. International Journal of Pharmaceutics, 2013, 455: 219−228. https://doi.org/10.1016/j.ijpharm.2013.07.034

[12]

K. Divya, M.S. Jisha. Chitosan nanoparticles preparation and applications. Environmental Chemistry Letters, 2018, 16: 101−112. https://doi.org/10.1007/s10311-017-0670-y

[13]

W.S. Rita, I.A.R.A. Asih, I.M.D. Swantara, et al. Antibacterial activity of flavonoids from ethyl acetate extract of milk banana peel (Musa x paradisiaca L.). HAYATI Journal of Biosciences, 2021, 28: 223−231. https://doi.org/10.4308/hjb.28.3.223

[14]

D. Fitri, N.Z.W. Kiromah, T.C. Widiastuti. Formulasi dan karakterisasi nanopartikel ektrak etanol daun salam (Syzygium polyanthum) pada berbagai variasi komposisi kitosan dengan metode gelasi ionik. Journal of Pharmaceutical Science and Clinical Research, 2020, 5(1): 61−69. https://doi.org/10.20961/jpscr.v5i1.39269

[15]
J.B. Harborne. Phytochemical Methods: A guide to modern technique of plant analysis. 2nd edition. London: Chapman and Hall, 1996: 37–99.
[16]
A. Saifudin, V. Rahayu, H.Y. Teruna. Standardisasi bahan obat alam. Yogyakarta: Graha Ilmu, 2011: 1–102.
[17]

F.U. Sineke, E. Suryanto, S. Sudewi. Penentuan kandungan fenolik dan sun protection factor (SPF) dari ekstrak etanol dari beberapa tongkol jagung (Zea mays L.). PHARMACON Jurnal Ilmiah Farmasi, 2016, 5: 275−283.

[18]
A.D. Susanti, D. Ardiana, G.P. Gumelar, et al. Polaritas pelarut sebagai pertimbangan dalam pemilihan pelarut untuk ekstraksi minyak bekatul dari bekatul varietas ketan (Oriza Sativa Glatinosa). In: Proceedings of Simposium Nasional RAPI XI FT UMS, 2012: 8–15.
[19]

E. Rismana, S. Kusumaningrum, O. Bunga, et al. Pengujian aktivitas antiacne nanopartikel kitosan-ekstrak kulit buah manggis (Garcinia mangostana). Media Litbangkes, 2014, 24(1): 19−27.

[20]
M.H. Kafshgar, M. Khorram, M. Khodadoost, et al. Reinforcement of chitosan nanoparticles obtained by an ionic cross-linking process. Iranian Polymer Journal (English Edition), 2011, 20(5): 445–456.
[21]

T.D. Lam, V.D. Hoang, L.N. Lien. Synthesis and characterization of chitosan nanoparticles used as drug carrier. Journal of Chemistry, 2006, 4: 104−109.

[22]

M.T. Qurashi, H.S. Blair, S.J. Allen. Studies on modified chitosan membranes. I. Preparation and characterization. Journal of Applied Polymer Science, 1992, 46(2): 255−261. https://doi.org/10.1002/app.1992.070460206

[23]
R.S. Greco, F.B. Prinz, R.L. Smith. Nanoscale technology in biological system. Boca Raton: CRC Press, 2002: 42–58.
[24]

Y.Q. Zhang, M.L. Tao, W.D. Shen, et al. Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials, 2004, 25(17): 3751−3759. https://doi.org/10.1016/j.biomaterials.2003.10.019

[25]

Y. Liu, L. Zou, L. Ma, et al. Synthesis and pharmacological activities of xanthone derivatives as α-glucosidase inhibitors. Bioorganic &Medicinal Chemistry, 2006, 14(16): 5683−5690. https://doi.org/10.1016/j.bmc.2006.04.014

[26]

K.T. Dewandri, S. Yuliani, S. Yasni. Ekstraksi dan karakterisasi nanopartikel ekstrak sirih merah (Piper crocatum). Jurnal Penelitian Pascapanen Pertanian, 2017, 10(2): 58−65. https://doi.org/10.21082/jpasca.v10n2.2013.58-65

[27]

P. Singh, Y.-J. Kim, D.B. Zhang, et al. Review biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 2016, 34: 588−599. https://doi.org/10.1016/j.tibtech.2016.02.006

[28]

D.S.M. Ayumi. Pembuatan dan Karakterisasi nanopartikel ekstrak etanol daun ekor naga (Rhaphidophora pinnata (L.f.) Schott) menggunakan metode gelasi ionik. Journal of Pharmaceutical Science and Clinical Research, 2020, 1: 61−69.

[29]

A.F. Tomaz, S.M.S. de Carvallo, R.C. Barbosa, et al. Ionically crosslinked chitosan membranes used as a drug carriers for cancer therapy application. Materials, 2018, 11: 1−18. https://doi.org/10.3390/ma11102051

[30]

A.H. Saberi, Y. Fang, D. McClements. Fabrication of vitamin e-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification. Journal of Colloid Interface Science, 2013, 391: 95−102. https://doi.org/10.1016/j.jcis.2012.08.069

[31]
A.Y. Mardani, H. Supriyono. Kajian Produksi Nanopartikel dari Arang Akasia dengan Tumbukan Bola Baja Diameter 5/16, 1/4., 3/16, 5/32 Inchi. UNSPECIFIED Thesis. Publikasi Ilmiah Universitas Muhammadiyah Surakarta, 2018.
[32]

Q.G. Liu, Y.Q. Jing, C.P. Han, et al. Encapsulation of curcumin in zein/caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties. Food Hydrocolloids, 2019, 93: 432−442. https://doi.org/10.1016/j.foodhyd.2019.02.003

[33]
V. Nurviana. The potential antioxidant of nanoparticle of limus (Mangifera foetida Lour) seed kernel extract. Jurnal Farmasi Udayana, 2020, 9(3): 144–151.
DOI
[34]
M. Srivastava. High-performance thin-layer chromatography (HPTLC). Berlin, Heidelberg: Springer, 2011.
DOI
[35]

N. Duraisamy, S. Dhayalan, M.R. Shaik, et al. Green synthesis of chitosan nanoparticles using of Martynia annua L. ethanol leaf extract and their antibacterial activity. Crystals, 2022, 12(11): 1550. https://doi.org/10.3390/cryst12111550

[36]
I. Antasionasti, I. Jayanto, S.S. Abdullah, et al. Karakterisasi nanopartikel ekstrak etanol kayu manis (Cinnamomum burmanii) dengan kitosan sodium tripolifosfat sebagai kandidat antioksidan. Chemistry Progress, 2020, 13(2): 77–85.
DOI
[37]

A.I. Putri, A. Sundaryono, I.N. Chandra. Karakterisasi nanopartikel kitosan ekstrak daun ubijalar (Ipomoea batatas L.) menggunakan metode gelasi ionik. Alotrop, 2019, 2(2): 203−207. https://doi.org/10.33369/atp.v2i2.7561(sameasRef.[19]

[38]
D.L. Pavia, G.M. Lampman, G.S. Kriz, et al. Introduction to spectroscopy. 5th edition. Cengage Learning, 2014: 45–47.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 11 July 2022
Revised: 24 November 2022
Accepted: 24 May 2023
Published: 01 August 2023
Issue date: March 2023

Copyright

© The Author(s) 2023.

Acknowledgements

Acknowledgment

This research was supported by DIPA PNBP Udayana University FY-2021 in accordance with Research Implementation Assignment Agreement Number B/96-225/UN14.4.A/PT.01.05/2021 (May 3, 2021).

Rights and permissions

This is an open-access article distributed under  the  terms  of  the  Creative  Commons  Attribution  4.0 International  License (CC BY) (http://creativecommons.org/licenses/by/4.0/), which  permits  unrestricted  use,  distribution,  and reproduction in any medium, provided the original author and source are credited.

Return