AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Are impermeable curtains necessary for a groundwater contaminant remediation project?

Ming Guo1Yun Yang2Qian-kun Luo1( )Ying-chun Li3Hai-chun Ma1Jia-zhong Qian1
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Huai River Water Resources Commission, Bengbu 233001, China
Public-welfare Geological Survey Management Center of Anhui Province & Geological Survey and Environmental Monitoring Center of Anhui Province, Hefei 230091, China
Show Author Information

Abstract

Constructing impermeable curtains to contain contaminant in aquifers is a costly and complex process that can impact the structure integrity of aquifer systems. Are impermeable curtains necessary for a groundwater contaminant remediation project? This study evaluates the necessity of impermeable curtains for groundwater contaminant remediation projects. Specifically, it considers remediation efforts based on the pump and treat (PAT) technique under various hydrogeological conditions and contaminant properties, comparing the total remediation cost and effectiveness. To further investigate, a multi-objective simulation and optimization model, utilizing the Multi-Objective Fast Harmony Search (MOFHS) algorithm, was employed to identify optimal groundwater remediation system designs that without impermeable curtains. Both a two-dimensional (2-D) hypothetical example and a three-dimensional (3-D) field example were used to assess the necessity of constructing impermeable curtains. The 2-D hypothetical example demonstrated that the installation of impermeable curtain is justified only when the dispersivity (αL) of the contaminant reaches 100 meters. In most cases, particularly at sites with porosity (n) under 0.3, alternative, more cost-effective, and efficient remediation strategies may be available, making impermeable barriers unnecessary. The optimization results of the 3-D field example further corroborate the conclusions derived from the 2-D hypothetical example. These findings provide valuable guidance for more scientifically informed, reasonable, and cost-effective groundwater contaminant remediation projects.

References

 
Bader J, Zitzler E. 2011. HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. Evol. Comput. 19, 45–76. DOI: 10.1162/EVCO_a_00009
 
Cao T, Zeng X, Wu J, et al. 2019. Groundwater contaminant source identification via Bayesian model selection and uncertainty quantification. Hydrogeol. J. 27, 2907–2918. DOI: 10.1007/s10040-019-02055-3
 
Chang LC, Chu HJ, Hsiao CT. 2007. Optimal planning of a dynamic pump-treat-inject groundwater remediation system. J. Hydrol. 342, 295–304. DOI:10.1016/j.jhydrol.2007.05.030.
 
Deb K. 2001. Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction. DOI: 10.1007/978-0-85729-652-8_1
 
Deb K, Pratap A, Agarwal S, et al. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197. DOI: 10.1109/4235.996017
 
Elango L, Brindha K, Kalpana L, et al. 2012. Groundwater flow and radionuclide decay-chain transport modelling around a proposed uranium tailings pond in India. Hydrogeol. J. 20, 797–812. DOI: 10.1007/s10040-012-0834-6
 
Fu F, Dionysiou DD, Liu H. 2014. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 267, 194–205. DOI: 10.1016/j.jhazmat.2013.12.062
 
Harbaugh, AW, ER Banta MC, Hill MG McDonald. 2000. MODFLOW-2000, the U. S. Geological Survey mod-ular ground-water model—User guide to modularizationconcepts and the ground-water flow process. USGS Open-File Report 00–92. Reston, Virginia: USGS. (Open-File Report).
 
Harbaugh AW, McDonald MG. 1996. Programmer's Documentation for MODFLOW-96, An Update to the U. S. Geological Survey Modular Finitedifference Ground-water Flow Model: U. S. Geological Survey Open-File Report 96–486.
 
Gao JH, Wang YS , Li YB , et al. 2019. Design of the dewatering project of pit with pensile curtains in the floodplain area near Yangtze River. IOP Conference Series Earth and Environmental. 376: 012062. DOI: 10.1088/1755-1315/376/1/012062
 
Kim S, Lim H, Yoon S. 2017. A Study on the Impermeable Effect by Grouting in the Subsea Tunnel. J. Korean GEO-Environ. Soc. 18, 5–19. DOI: 10.14481/JKGES.2017.18.6.5
 
Liu C, Chen X, Banwart SA, et al. 2021. A novel permeable reactive biobarrier for ortho-nitrochlorobenzene pollution control in groundwater: Experimental evaluation and kinetic modelling. J. Hazard. Mater. 420, 126563. DOI: 10.1016/j.jhazmat.2021.126563
 
Locatelli L, Binning PJ, Sanchez-Vila X, et al. 2019. A simple contaminant fate and transport modelling tool for management and risk assessment of groundwater pollution from contaminated sites. J. Contam. Hydrol. 221, 35–49. DOI: 10.1016/j.jconhyd.2018.11.002
 
Luo Q, Wu JF, Sun X, et al. 2012. Optimal design of groundwater remediation systems using a multi-objective fast harmony search algorithm. Hydrogeol. J. 20, 1497–1510. DOI: 10.1007/s10040-012-0900-0
 
Luo Q, Wu JF, Yang Y, et al. 2016. Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty. J. Hydrol. 534, 352–363. DOI:10.1016/j.jhydrol.2016.01.009.
 
Luo Q, W JF Yang Y, et al. 2014. Optimal design of groundwater remediation system using a probabilistic multi-objective fast harmony search algorithm under uncertainty. J. Hydrol. 519, 3305–3315. DOI:10.1016/j.jhydrol.2014.10.023.
 
Luo Q, Yang Y, Qian J, et al. 2020. Spring protection and sustainable management of groundwater resources in a spring field. J. Hydrol. 582, 124498. DOI:10.1016/j.jhydrol.2019.124498.
 
Lyu HM, Shen SL, Wu YX, et al. 2021. Calculation of groundwater head distribution with a close barrier during excavation dewatering in confined aquifer. Geosci. Front. 12, 791–803. DOI: 10.1016/j.gsf.2020.08.002
 
Mattila V, Virtanen K. 2014. Maintenance scheduling of a fleet of fighter aircraft through multi-objective simulation-optimization. SIMULATION 90, 1023–1040. DOI: 10.1177/0037549714540008
 
Mercer JW, Cohen RM. 1990. A review of immiscible fluids in the subsurface: Properties, models, characterization and remediation. J. Contam. Hydrol. 6, 107–163. DOI:10.1016/0169-7722(90)90043-G.
 
Park YC. 2016. Cost-effective optimal design of a pump-and-treat system for remediating groundwater contaminant at an industrial complex. Geosci. J. 20, 891–901. DOI:10.1007/s12303-016-0030-0.
 
Rao SS. 1979. Optimization–Theory and Applications. Int. J. Numer. Methods Eng. DOI: 10.1002/nme.1620141118
 
Rodell M, Velicogna I, Famiglietti JS. 2009. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002. DOI:10.1038/nature08238.
 
Song J, Yang Y, Chen G, et al. 2019. Surrogate assisted multi-objective robust optimization for groundwater monitoring network design. J. Hydrol. 577, 123994. DOI:10.1016/j.jhydrol.2019.123994.
 
Song J, Yang Y, Wu JF, et al. 2018. Adaptive surrogate model based multiobjective optimization for coastal aquifer management. J. Hydrol. 561, 98–111. DOI:10.1016/j.jhydrol.2018.03.063.
 
Song YC. 2014. Research for Seepage Prevention Type of Dam Foundation of Xiabandi Hydraulic Engineering in Xinjiang. Appl. Mech. Mater. 501–504, 1942–1946. DOI: 10.4028/www.scientific.net/AMM.501-504.1942
 
Tang Z, Song L, Jin D, et al. 2023. An Engineering Case History of the Prevention and Remediation of Sinkholes Induced by Limestone Quarrying. Sustainability 15, 2808. DOI: 10.3390/su15032808
 
Vidic RD, Brantley SL, Vandenbossche JM, et al. 2013. Impact of Shale Gas Development on Regional Water Quality. Science 340, 1235009. DOI: 10.1126/science.1235009
 
Wang Z, Li W, Li Z, et al. 2020. Groundwater response to oil storage in large-scale rock caverns with a water curtain system: Site monitoring and statistical analysis. Tunn. Undergr. Space Technol. 99, 103363. DOI: 10.1016/j.tust.2020.103363
 
Wang Z, Yang Y, Wu JF, et al. 2022. Multi-objective optimization of the coastal groundwater abstraction for striking the balance among conflicts of resource-environment-economy in Longkou City, China. Water Res. 211, 118045. DOI: 10.1016/j.watres.2022.118045
 
Warren V, Gary L, John W. 2002. Introduction to Hydrology.
 
Wu J, Zheng C, Chien CC. 2005. Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. J. Contam. Hydrol. 77, 41–65. DOI: 10.1016/j.jconhyd.2004.11.006
 
Yang K, Xu C, Chi M, et al. 2022. Analytical Analysis of the Groundwater Drawdown Difference Induced by Foundation Pit Dewatering with a Suspended Waterproof Curtain. Appl. Sci. 12, 10301. DOI:10.3390/app122010301.
 
Yang Y, Luo Q, Ye G. 2018. Optimization of water allocation system at the river basins. Presented at the 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD).
 
Yang Y, Song J, Simmons CT, et al. 2021. A conjunctive management framework for the optimal design of pumping and injection strategies to mitigate seawater intrusion. J. Environ. Manage. 282, 111964. DOI:10.1016/j.jenvman.2021.111964.
 
Yang Y, Wu JF, Luo Q, et al. 2017. Effects of Stochastic Simulations on Multiobjective Optimization of Groundwater Remediation Design under Uncertainty. J. Hydrol. Eng. 22, 04017015. DOI:10.1061/(ASCE)HE.19435584.0001510.
 
Zheng C, Wang PP. 2003. A modular groundwater optimizer incorporating MODFLOW/MT3DMS, Documentation and user's guide. University of Alabama and Groundwater Systems Research Ltd. Tuscaloosa, AL.
 
Zheng C, Wang PP. 1999. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User's Guide.
 
Zong Woo Geem, Joong Hoon Kim, Loganathan GV. 2001. A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION 76, 60–68. DOI:10.1177/003754970107600201.
Journal of Groundwater Science and Engineering
Cite this article:
Guo M, Yang Y, Luo Q-k, et al. Are impermeable curtains necessary for a groundwater contaminant remediation project?. Journal of Groundwater Science and Engineering, 2025, https://doi.org/10.26599/JGSE.2025.9280052

62

Views

12

Downloads

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 23 July 2024
Accepted: 28 December 2024
Published: 27 June 2025
2305-7068/© 2025 Journal of Groundwater Science and Engineering Editorial Office

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)

Return