Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
With the rapid development of molecular biology technology, especially the application of metagenomics, many challenges in groundwater microbial research have been overcome. Metagenomics has enabled the exploration of the diversity of unculturable microorganisms in groundwater. This paper reviews macro genomics 16S rRNA and metagenomics sequencing data, highlighting recent applications of metagenomics in investigating groundwater microbial communities. It also examines the relationship between microbial diversity and environmental factors, the identification of functional microbial groups, the role of microorganisms in groundwater pollution remediation, and their contribution to the hydrogeochemical cycle. Finally, it provide insights into future research directions in groundwater microbiology.
Alain K, Querellou J. 2009. Cultivating the uncultured: Limits, advances and future challenges. Extremophiles, 13(4): 583−594. DOI:10.1007/s00792-009-0261-3.
Alneberg J, Bjarnason BS, De Bruijn I, et al. 2014. Binning metagenomic contigs by coverage and composition. Nature methods, 11(11): 1144−1146. DOI:10.1038/nmeth.3103.
An XL, Baker P, Li H, et al. 2016. The patterns of bacterial community and relationships between sulfate-reducing bacteria and hydrochemistry in sulfate-polluted groundwater of Baogang rare earth tailings. Environmental Science and Pollution Research, 23(21): 21766−21779. DOI:10.1007/s11356-016-7381-y.
Anantharaman K, Brown CT, Hug LA, et al. 2016. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nature Communications, 7(1): 13219. DOI:10.1038/ncomms13219.
Biswas R, Majhi AK, Sarkar A. 2019. The role of arsenate reducing bacteria for their prospective application in arsenic contaminated groundwater aquifer system. Biocatalysis Agricultural Biotechnology, 20: 101218. DOI:10.1016/j.bcab.2019.101218.
Bradley PM. 2000. Microbial degradation of chloroethenes in groundwater systems. Hydrogeology Journal, 8(1): 104−111. DOI:10.1007/s100400050011.
Chang Q, Luan Y, Chen T, et al. 2012. Computational methods for the analysis of tag sequences in metagenomics studies. Frontiers in Bioscience-Scholar, S4: 1333−1343.
Chen ZG, Cao WQ, Li Y, et al. 2024. Enhancing the removal of chlorinated hydrocarbons from groundwater using a new BL5 microorganism with functional CS@ZVI materials. Journal of Water Process Engineering, 57: 104699. DOI:10.1016/j.jwpe.2023.104699.
Costa C, Dijkema C, Friedrich M, et al. 2000. Denitrification with methane as electron donor in oxygen-limited bioreactors. Applied Microbiology and Biotechnology, 53: 754−762. DOI:10.1007/s002530000337.
Dong Y, Sanford RA, Boyanov MI, et al. 2016. Tepidibacillus decaturensis sp. nov., a microaerophilic, moderately thermophilic iron-reducing bacterium isolated from 1.7 km depth groundwater. International Journal of Systematic Evolutionary Microbiology, 66(10): 3964−3971. DOI:10.1099/ijsem.0.001295.
Eduardo OM, Javiera TA, Edel F, et al. 2024. A review of autotrophic denitrification for groundwater remediation: A special focus on bioelectrochemical reactors. Journal of Environmental Chemical Engineering, 12(1): 111552. DOI:10.1016/j.jece.2023.111552.
Fahy A, Lethbridge G, Earle R, et al. 2005. Effects of long-term benzene pollution on bacterial diversity and community structure in groundwater. Environmental Microbiology, 7(8): 1192−1199. DOI:10.1111/j.1462-2920.2005.00799.x.
Falkowski PG, Fenchel T, Delong EF. 2008. The microbial engines that drive Earth's biogeochemical cycles. Science, 320(5879): 1034−1039. DOI:10.1126/science.1153213.
Feng HJ, Yang WY, Zhang YF, et al. 2023. Electroactive microorganism-assisted remediation of groundwater contamination: Advances and challenges. Bioresource Technology, 377: 128916. DOI:10.1016/j.biortech.2023.128916.
Gibert O, Assal A, Devlin H, et al. 2019. Performance of a field-scale biological permeable reactive barrier for in situ remediation of nitrate-contaminated groundwater. The Science of the Total Environment, 659: 211−220. DOI:10.1016/j.scitotenv.2018.12.340.
Gorra R, Webster G, Martin M, et al. 2012. Dynamic microbial community associated with iron-arsenic co-precipitation products from a groundwater storage system in Bangladesh. Microbial Ecology, 64(1): 171. DOI:10.1007/s00248-012-0014-1.
Griebler C, Lueders T. 2010. Microbial biodiversity in groundwater ecosystems. Freshwater Biology, 54(4): 649−677. DOI:10.1111/j.1365-2427.2008.02013.x.
Griebler C, Malard F, Lefébure T. 2014. Current developments in groundwater ecology-from biodiversity to ecosystem function and services. Current Opinion in Biotechnology, 27: 159−167. DOI:10.1016/j.copbio.2014.01.018.
Groffman PM, Howard G, Gold AJ, et al. 1996. Microbial nitrate processing in shallow groundwater in a riparian forest. Journal of Environmental Quality, 25(6): 1309−1316. DOI:10.2134/jeq1996.00472425002500060020x.
Guo HM, Liu Z, Ding S, et al. 2015. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia. Environmental Pollution, 203: 50−59. DOI:10.1016/j.envpol.2015.03.034.
Handelsman J, Rondon MR, Brady SF, et al. 1998. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chemistry & Biology, 5(10): R245−R249. DOI:10.1016/S1074-5521(98)90108-9.
Handelsman J. 2004. Metagenomics: Application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews, 68(4): 669−685. DOI:10.1128/mmbr.68.4.669-685.2004.
He X, Chen Y. 2015. Microbes and their purification effect in groundwater. Studies of Trace Elements and Health, 32(5): 56−59. (in Chinese)
Huang L, Feng X, Du Q, et al. 2017. Focusing on key scientific issues of microbiome research in hydrosphere: NSFC major research plan for microbes in hydrosphere. Bulletin of Chinese Academy of Sciences, 32(3): 266−272. DOI:10.16418/j.issn.1000-3045.2017.03.007.
Huang X, Chen J, Zhou S, et al. 2011. Spatial variation of groundwater microorganism and its implications in assessing environmental evolution due to urbanization in Zhuhai, China. Journal of Natural Resources, 26(3): 504−512. (in Chinese)
Hugenholtz P, Tyson GW. 2008. Microbiology: Metagenomics. Nature, 455: 481−483. DOI:10.1038/455481a.
Huson DH, Mitra S, Ruscheweyh HJ, et al. 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Research, 21(9): 1552−1560. DOI:10.1101/gr.120618.111.
Jiang Z, Li P, Wang YH, et al. 2019. Arsenic mobilization in a high arsenic groundwater revealed by metagenomic and Geochip analyses. Scientific Reports, 9(1): 12972. DOI:10.1038/s41598-019-49365-w.
Jiang Z, Huang MH, Jiang YG, et al. 2023. Microbial contributions to iodide enrichment in deep groundwater in the North China Plain. Environmental Science & Technology, 57(6): 2625−2635. DOI:10.1021/acs.est.2c06657.
Jin Q. 2012. Energy conservation of anaerobic respiration. American Journal of Science, 312(6): 573−628. DOI:10.2475/06.2012.01.
John DE, Rose JB. 2005. Review of factors affecting microbial survival in groundwater. Environmental Science & Technology, 39(19): 7345−7356. DOI:10.1021/es047995w.
Kao CM, Liao HY, Chien CC, et al. 2015. The change of microbial community from chlorinated solvent-contaminated groundwater after biostimulation using the metagenome analysis. Journal of Hazardous Materials, 302: 144−150. DOI:10.1016/j.jhazmat.2015.09.047.
Lawati WMA, Rizoulis A, Eiche E, et al. 2012. Characterisation of organic matter and microbial communities in contrasting arsenic-rich Holocene and arsenic-poor Pleistocene aquifers, Red River Delta, Vietnam. Applied Geochemistry, 27(1): 315−325. DOI:10.1016/j.apgeochem.2011.09.030.
Li L, Maher K, Navarre-Sitchler A, et al. 2017. Expanding the role of reactive transport models in critical zone processes. Earth-Science Review, 165: 280−301. DOI:10.1016/j.earscirev.2016.09.001.
Li J, Yang L, Yu SH, et al. 2023. Environmental stressors altered the groundwater microbiome and nitrogen cycling: A focus on influencing mechanisms and pathways. Science of The Total Environment, 905: 167004. DOI:10.1016/j.scitotenv.2023.167004.
Li J, Zhang C, Lan F, et al. 2019a. Structure characteristics of microbial community at different depths of groundwater. China Environmental Science, 39(6): 2614−2623. (in Chinese). DOI:10.19674/j.cnki.issn1000-6923.2019.0311.
Li J, Zhang H, Lan F, et al. 2019b. Research progress of domestic groundwater microorganism based on bibliometrics analysis. Yangtze River, 50(9): 54−59. (in Chinese). DOI:10.16232/j.cnki.1001-4179.2019.09.010.
Li P, Tan T, Liu H, et al. 2021. Functional microbial communities and the biogeochemical cycles in groundwater. Acta Microbiologica Sinica, 61(6): 1598−1609. (in Chinese) DOI:10.13343/j.cnki.wsxb.20200626.
Li P, Wang YH, Jiang Z, et al. 2013. Microbial diversity in high arsenic groundwater in Hetao Basin of Inner Mongolia, China. Geomicrobiology Journal, 30(10): 897−909. DOI:10.1080/01490451.2013.791354.
Liao VH, Chu YJ, Su YC, et al. 2011. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. Journal of Contaminant Hydrology, 123(123): 20−29. DOI:10.1016/j.jconhyd.2010.12.003.
Liu H, Li P, Wang H, et al. 2020. Arsenic mobilization affected by extracellular polymeric substances (EPS) of the dissimilatory iron reducing bacteria isolated from high arsenic groundwater. Science of The Total Environment, 735: 139501. DOI:10.1016/j.scitotenv.2020.139501.
Liu S, Chen Q, Li J, et al. 2022. Different spatiotemporal dynamics, ecological drivers and assembly processes of bacterial, archaeal and fungal communities in brackish-saline groundwater. Water Research, 214: 118193. DOI:10.1016/j.watres.2022.118193.
Liu Y, Zhao N, Dai S, et al. 2024. Metagenomic insights into phenanthrene biodegradation in electrical field-governed biofilms for groundwater bioremediation. Journal of Hazardous Materials, 465: 133477. DOI:10.1016/j.jhazmat.2024.133477.
Macler BA, Merkle JC. 2000. Current knowledge on groundwater microbial pathogens and their control. Hydrogeology Journal, 8(1): 29−40. DOI:10.1007/PL00010972.
Michalsen MM, King AS, Istok JD, et al. 2020. Spatially-distinct redox conditions and degradation rates following field-scale bioaugmentation for RDX-contaminated groundwater remediation. Journal of Hazardous Materials, 387: 121529. DOI:10.1016/j.jhazmat.2019.121529.
Mohapatra B, Sarkar A, Joshi S, et al. 2017. An arsenate-reducing and alkane-metabolizing novel bacterium, Rhizobium arsenicireducens sp. nov., isolated from arsenic-rich groundwater. Archives of Microbiology, 199(2): 191−201. DOI:10.1007/s00203-016-1286-5.
Paul D, Kazy SK, Banerjee TD, et al. 2015a. Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater. Bioresource Technology, 188: 14−23. DOI:10.1016/j.biortech.2015.02.039.
Paul D, Kezy SK, Gupta AK, et al. 2015b. Diversity, metabolic properties and arsenic mobilization potential of indigenous bacteria in arsenic contaminated groundwater of west Bengal, India. Plos One, 10(3): e0118735. DOI:10.1371/journal.pone.0118735.
Rinke C, Schwientek P, Sczyrba A, et al. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499(7459): 431−437. DOI:10.1038/nature12352.
Rooneyvarga JN, Anderson RT, Fraga JL, et al. 1999. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Applied & Environmental Microbiology, 65(7): 3056−3063. DOI:10.1128/AEM.65.7.3056-3063.1999.
Sarkar A, Kazy SK, Sar P. 2013. Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India. Ecotoxicology, 22(2): 363−376. DOI:10.1007/s10646-012-1031-z.
Schwab VF, Herrmann M, Roth V, et al. 2016. Functional diversity of microbial communities in pristine aquifers inferred by PLFA- and sequencing-based approaches. Biogeosciences, 14(10): 2697−2714. DOI:10.5194/bg-14-2697-2017.
Shin J, Lee S, Go MJ, et al. 2016. Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing. Scientific Reports, 6: 29681. DOI:10.1038/srep29681.
Sonthiphand P, Ruangroengkulrith S, Mhuantong W, et al. 2019. Metagenomic insights into microbial diversity in a groundwater basin impacted by a variety of anthropogenic activities. Environmental Science and Pollution Research, 26(26): 26765−26781. DOI:10.1007/s11356-019-05905-5.
Tian HX, Wang J, Li JY, et al. 2019. Six new families of aerobic arsenate reducing bacteria: Leclercia, Raoultella, Kosakonia, Lelliottia, Yokenella, and Kluyvera. Geomicrobiology Journal, 36(4): 339−347. DOI:10.1080/01490451.2018.1554726.
Timmers PH, Suarez-Zuluaga DA, van Rossem M, et al. 2016. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. The ISME Journal, 10: 1400−1412. DOI:10.1038/ismej.2015.213.
Vallino JJ, Algar CK. 2016. The thermodynamics of marine biogeochemical cycles: Lotka revisited. Annual Review of Marine Science, 8: 333−356. DOI:10.1146/annurev-marine-010814-015843.
Wang B, Li C, Lu W, et al. 2017. Shift of microbial communities during the CO2-brine-sandstone interaction process. Environmental Science, 38(7): 2978−2987. (in Chinese) DOI:10.13227/j.hjkx.201612067.
Wang JL, Zhang YL, Ding Y, et al. 2023. Comparing the indigenous microorganism system in typical petroleum-contaminated groundwater. Chemosphere, 311(2): 137173. DOI:10.1016/j.chemosphere.2022.137173.
Wang L, Lv Z, Hao C, et al. 2013. Degrading bacteria community structure in groundwater of a petroleum-contaminated site. Environmental Science & Technology, 36(7): 1−8. (in Chinese) DOI:10.3969/j.issn.1003-6504.2013.07.001.
Wang YH, Wei DZ, Li P, et al. 2021a. Diversity and arsenic-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high arsenic groundwater of the Hetao Plain, Inner Mongolia. Ecotoxicology, 30: 1680−1688. DOI:10.1007/s10646-020-02305-1.
Wang YH, Zhang, GL, Wang, HL, et al. 2021b. Effects of different dissolved organic matter on microbial communities and arsenic mobilization in aquifers. Journal of Hazardous Materials, 411: 125146. DOI:10.1016/j.jhazmat.2021.125146.
Xue YG, Liu F, Zhou LL, et al. 2017. Comparison study of bacterial community structure between groundwater and soil in industrial park based on high throughput sequencing. Asian Journal of Ecotoxicology, (6): 107−115. (in Chinese) DOI:10.7524/AJE.1673-5897.20171121002.
Yan D, Sha J, Liu B, et al. 2019. Value assessment of groundwater ecosystem services. Water Resources and Power, 37(2): 59−62. (in Chinese)
Yan S, Liu Y, Liu C, et al. 2016. Nitrate bioreduction in redox-variable low permeability sediments. Science of the Total Environment, 539: 185−195. DOI:10.1016/j.scitotenv.2015.08.122.
Zhang B, Qiu R, Lu L, et al. 2018. Autotrophic vanadium (V) bioreduction in groundwater by elemental sulfur and zerovalent iron. Environmental Science Technology, 52(13): 7434−7442. DOI:10.1021/acs.est.8b01317.
Zhang H, Cai W, Guo F, et al. 2023. Microbial community composition and environmental response characteristics of typical brackish groundwater in the North China Plain. China Geology, 6(3): 383−394. DOI:10.31035/cg2022073.
Zhang M, Di J, Wang L. 2010. Influencing factors of microbial survival in groundwater ecosystem. Groundwater, 32(4): 18−19. (in Chinese)
Zhang P, Van Nostrand JD, He Z, et al. 2015a. A slow-release substrate stimulates groundwater microbial communities for long-term in-situ Cr (VI) reduction. Environmental Science & Technology, 49(21): 12922−12931. DOI:10.1021/acs.est.5b00024.
Zhang P, Wu WM, Van Nostrand JD, et al. 2015b. Dynamic succession of groundwater functional microbial communities in response to emulsified vegetable oil amendment during sustained in Situ U (VI) reduction. Applied & Environmental Microbiology, 81(12): 4164−4172. DOI:10.1128/aem.00043-15.
Zhang S, Wang X, Zhen Y. 2021. lnfluence of tide on bacterial community structure in coastal shallow groundwater. Periodical of Ocean University of China, 51(12): 89−96. (in Chinese) DOI:10.16441/j.cnki.hdxb.20200289.
Zheng Z, Zhang Y, Su X, et al. 2016. Responses of hydrochemical parameters, community structures, and microbial activities to the natural biodegradation of petroleum hydrocarbons in a groundwater-soil environment. Environmental Earth Sciences, 75(21): 1400. DOI:10.1007/s12665-016-6193-1.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0)