AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Research | Open Access

Botanicals impact the bifidogenic effect and metabolic outputs of in vitro fiber fermentation by gut-derived microbiota in individual-specific ways

Dane G DeemeraNoah VoreadesbPeter A BronbStephen R Lindemanna,c,d
Department of Food Science, Purdue University, West Lafayette, IN, United States
Olipop Inc, Oakland, CA, United States
Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
Show Author Information

Graphical Abstract

Abstract

Fortification of products frequently consumed by a large proportion of society provides an attractive strategy to close the “fiber gap” and may have the potential to concomitantly reverse the detrimental health effects exacerbated by our modern diets. Besides prebiotic fibers, products can contain other functional components, e.g. botanicals. However, most studies have investigated functional components in isolation. The impact of other components present in functional product blends on the bifidogenic effect typically exerted by prebiotic fibers are largely unexplored. Here, we investigated the fiber and botanical blends included in OLIPOP, a functional soda, in an in vitro gut fermentation model. Our data revealed that the blend of inulins and resistant dextrins promoted growth of bifidobacteria across gut microbiota from four donors, even those with small initial populations. In addition, botanicals interacted with fiber fermentation in donor-specific ways, in some cases strongly enhancing fermentation rate and production of short-chain fatty acids.

References

 

Abratt, V.R., and Reid, S.J. (2010). Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. Adv. Appl. Microbiol. 72: 63–87.

 

Arboleya, S., Watkins, C., Stanton, C., and Ross, R.P. (2016). Gut Bifidobacteria Populations in Human Health and Aging. Front. Microbiol. 7: 1204.

 

Bohme, H., Kunert, K.J., and Boger, P. (1978). The role of plastidic cytochrome c in algal electron transport and photophosphorylation. Biochim. Biophys. Acta 501: 275–285.

 

Cai, X., Yu, H., Liu, L., Lu, T., Li, J., Ji, Y., Le, Z., Bao, L., Ma, W., Xiao, R., and Yang, Y. (2018). Milk Powder Co-Supplemented with Inulin and Resistant Dextrin Improves Glycemic Control and Insulin Resistance in Elderly Type 2 Diabetes Mellitus: A 12-Week Randomized, Double-Blind, Placebo-Controlled Trial. Mol. Nutr. Food Res. 62: e1800865.

 

Cefalu, W.T., Ye, J., and Wang, Z.Q. (2008). Efficacy of dietary supplementation with botanicals on carbohydrate metabolism in humans. Endocr. Metab. Immune Disord. Drug Targets 8: 78–81.

 

Choi, Y., Bose, S., Shin, N.R., Song, E.J., Nam, Y.D., and Kim, H. (2020). Lactate-Fortified Puerariae Radix Fermented by Bifidobacterium breve Improved Diet-Induced Metabolic Dysregulation via Alteration of Gut Microbial Communities. Nutrients 12: 276.

 

Dahl, W.J., and Stewart, M.L. (2015). Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber. J. Acad Nutr. Diet. 115: 1861–1870.

 

De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J.B., Massart, S., Collini, S., Pieraccini, G., and Lionetti, P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad Sci. U S A 107: 14691–14696.

 

Desai, M.S., Seekatz, A.M., Koropatkin, N.M., Kamada, N., Hickey, C.A., Wolter, M., Pudlo, N.A., Kitamoto, S., Terrapon, N., Muller, A., Young, V.B., Henrissat, B., Wilmes, P., Stappenbeck, T.S., Nunez, G., and Martens, E.C. (2016). A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 167: 1339–1353.e1321.

 

Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K., and Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14: 491–502.

 

Graff, E., Vedantam, S., Parianos, M., Khakoo, N., Beiling, M., and Pearlman, M. (2023). Dietary Intake and Systemic Inflammation: Can We Use Food as Medicine? Curr. Nutr. Rep. 12: 247–254.

 

Jones, J.M. (2014). CODEX-aligned dietary fiber definitions help to bridge the 'fiber gap'. Nutr. J. 13: 34.

 

Koecher, K.J., Noack, J.A., Timm, D.A., Klosterbuer, A.S., Thomas, W., and Slavin, J.L. (2014). Estimation and interpretation of fermentation in the gut: coupling results from a 24 h batch in vitro system with fecal measurements from a human intervention feeding study using fructo-oligosaccharides, inulin, gum acacia, and pea fiber. J. Agric. Food Chem. 62: 1332–1337.

 

Lecerf, J.M., Depeint, F., Clerc, E., Dugenet, Y., Niamba, C.N., Rhazi, L., Cayzeele, A., Abdelnour, G., Jaruga, A., Younes, H., Jacobs, H., Lambrey, G., Abdelnour, A.M., and Pouillart, P.R. (2012). Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br. J. Nutr. 108: 1847–1858.

 

Makki, K., Deehan, E.C., Walter, J., and Backhed, F. (2018). The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 23: 705–715.

 

Moya-Perez, A., Neef, A., and Sanz, Y. (2015). Bifidobacterium pseudocatenulatum CECT 7765 Reduces Obesity-Associated Inflammation by Restoring the Lymphocyte-Macrophage Balance and Gut Microbiota Structure in High-Fat Diet-Fed Mice. PLoS One 10: e0126976.

 

O’Keefe, S.J., Li, J.V., Lahti, L., Ou, J., Carbonero, F., Mohammed, K., Posma, J.M., Kinross, J., Wahl, E., Ruder, E., Vipperla, K., Naidoo, V., Mtshali, L., Tims, S., Puylaert, P.G., DeLany, J., Krasinskas, A., Benefiel, A.C., Kaseb, H.O., Newton, K., Nicholson, J.K., de Vos, W.M., Gaskins, H.R., and Zoetendal, E.G. (2015). Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6: 6342.

 

Qin, Y.Q., Wang, L.Y., Yang, X.Y., Xu, Y.J., Fan, G., Fan, Y.G., Ren, J.N., An, Q., and Li, X. (2023). Inulin: properties and health benefits. Food Funct. 14: 2948–2968.

 

Quagliani, D., and Felt-Gunderson, P. (2017). Closing America's Fiber Intake Gap: Communication Strategies From a Food and Fiber Summit. Am. J. Lifestyle Med. 11: 80–85.

 

Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E., and Te Morenga, L. (2019). Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393: 434–445.

 

Romero Marcia, A.D., Yao, T., Chen, M.H., Oles, R.E., and Lindemann, S.R. (2021). Fine Carbohydrate Structure of Dietary Resistant Glucans Governs the Structure and Function of Human Gut Microbiota. Nutrients 13: 2924.

 

Schnorr, S.L., Candela, M., Rampelli, S., Centanni, M., Consolandi, C., Basaglia, G., Turroni, S., Biagi, E., Peano, C., Severgnini, M., Fiori, J., Gotti, R., De Bellis, G., Luiselli, D., Brigidi, P., Mabulla, A., Marlowe, F., Henry, A.G., and Crittenden, A.N. (2014). Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5: 3654.

 

Smits, S.A., Leach, J., Sonnenburg, E.D., Gonzalez, C.G., Lichtman, J.S., Reid, G., Knight, R., Manjurano, A., Changalucha, J., Elias, J.E., Dominguez-Bello, M.G., and Sonnenburg, J.L. (2017). Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357: 802–806.

 

Statovci, D., Aguilera, M., MacSharry, J., and Melgar, S. (2017). The Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces. Front. Immunol. 8: 838.

 

Tierney, B.T., Versalovic, J., Fasano, A., Petrosino, J.F., Chumpitazi, B.P., Mayer, E.A., Boetes, J., Smits, G., Parkar, S.G., Voreades, N., Kartal, E., Al-Ghalith, G.A., Pane, M., Bron, P.A., Reid, G., Dhir, R., and Mason, C.E. (2023). Functional response to a microbial synbiotic in the gastrointestinal system of children: a randomized clinical trial. Pediatr. Res. 93: 2005–2013.

 

Vangay, P., Johnson, A.J., Ward, T.L., Al-Ghalith, G.A., Shields-Cutler, R.R., Hillmann, B.M., Lucas, S.K., Beura, L.K., Thompson, E.A., Till, L.M., Batres, R., Paw, B., Pergament, S.L., Saenyakul, P., Xiong, M., Kim, A.D., Kim, G., Masopust, D., Martens, E.C., Angkurawaranon, C., McGready, R., Kashyap, P.C., Culhane-Pera, K.A., and Knights, D. (2018). US Immigration Westernizes the Human Gut Microbiome. Cell 175: 962–972.e910.

 

Vedantam, S., Graff, E., Khakoo, N.S., Khakoo, N.S., and Pearlman, M. (2023). Food as Medicine: How to Influence the Microbiome and Improve Symptoms in Patients with Irritable Bowel Syndrome. Curr. Gastroenterol. Rep. 25: 52–60.

 

Voreades, N., Kozil, A., and Weir, T.L. (2014). Diet and the development of the human intestinal microbiome. Front. Microbiol. 5: 494.

 

Wang, L., Hu, L., Xu, Q., Yin, B., Fang, D., Wang, G., Zhao, J., Zhang, H., and Chen, W. (2017). Bifidobacterium adolescentis Exerts Strain-Specific Effects on Constipation Induced by Loperamide in BALB/c Mice. Int. J. Mol. Sci. 18: 318.

 

Xu, X., Guo, Y., Chen, S., Ma, W., Xu, X., Hu, S., Jin, L., Sun, J., Mao, J., and Shen, C. (2022). The Positive Influence of Polyphenols Extracted From Pueraria lobata Root on the Gut Microbiota and Its Antioxidant Capability. Front. Nutr. 9: 868188.

 

Yao, S., Zhao, Z., Wang, W., and Liu, X. (2021). Bifidobacterium Longum: Protection against Inflammatory Bowel Disease. J. Immunol. Res. 2021: 8030297.

 

Yao, T., Chen, M.H., and Lindemann, S.R. (2020). Structurally complex carbohydrates maintain diversity in gut-derived microbial consortia under high dilution pressure. FEMS Microbiol. Ecol. 96: fiaa158.

Journal of Food Bioactives
Pages 57-67
Cite this article:
Deemer DG, Voreades N, Bron PA, et al. Botanicals impact the bifidogenic effect and metabolic outputs of in vitro fiber fermentation by gut-derived microbiota in individual-specific ways. Journal of Food Bioactives, 2025, 30: 57-67. https://doi.org/10.26599/JFB.2025.95030415

31

Views

0

Downloads

0

Crossref

Altmetrics

Received: 19 May 2025
Revised: 24 June 2025
Accepted: 24 June 2025
Published: 15 July 2025
© The author(s) 2025. Publishing Services by Tsinghua University Press

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

Return