Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Sea buckthorn (Hippophae rhamnoides L.) is a naturally occurring dual-use plant for both medicine and food. It contains numerous bioactive compounds demonstrating significant health-promoting effects, including anti-inflammatory, antioxidant, and blood lipid-regulating activities. China currently possesses the world’s largest sea buckthorn resources. The full and rational utilization of these resources holds substantial importance for enhancing public health and stimulating local economic development. While research on the bioactive compounds and efficacy of sea buckthorn has garnered increasing attention in recent years, a systematic review of this knowledge remains lacking. This article comprehensively summarizes the rich profile of bioactive compounds in sea buckthorn and their documented health benefits. It aims to provide a foundation for the further application and development of sea buckthorn within the pharmaceutical, functional food, and related industries.
Alqudah, A., Qnais, E., Wedyan, M., Altaber, S., Bseiso, Y., Oqal, M., AbuDalo, R., Alrosan, A., Melhim, S., Alqudah, M., Athamneh, R., and Gammouh, O. (2023). Isorhamnetin reduces glucose level, inflammation, and oxidative stress in high-fat diet/streptozotocin diabetic mice model. Molecules 28(2): 502.
Asofiei, I., Calinescu, I., Trifan, A., and Gavrila, A. (2019). A semi -continuous process for polyphenols extraction from sea buckthorn leaves. Sci. Rep. 9(1): 12044.
Attri, S., and Goel, G. (2019). Influence of polyphenol rich seabuckthorn berries juice on release of polyphenols and colonic microbiota on exposure to simulated human digestion model. Food Research International 111: 314–323.
Bai, L., and He, X. (2021). The effect of fea buckthorn oil on cell proliferation and apoptosis of human gastric cancer cells HGC-27. Acta Neuropharmacologica 11(04): 4–8.
Balkrishna, A., Sakat, S., Joshi, K., Joshi, K., Sharma, V., Ranjan, R., Bhattacharya, K., and Varshney, A. (2019). Cytokines driven antiinflammatory and anti-psoriasis like efficacies of nutraceutical sea buckthorn (Hippophae rhamnoides) oil. ront. Pharmacol. 10: 1186.
Bouras, K., Kopsidas, K., Bariotakis, M., Kitsiou, P., Kapodistria, K., Agrogiannis, G., Vergados, I., Theodossiadis, P., and Perrea, D. (2017). Effects of dietary supplementation with sea buckthorn (Hippophae rhamnoides L.) seed oil on an experimental model of hypertensive retinopathy in wistar rats. Biomed. Hub. 2(1): 1–12.
Chandra, S., Zafar, R., Dwivedi, P., Prita, B., and Shinde, L. (2018). Pharmacological and nutritional importance of sea buckthorn (Hippophae). Pharm. Innov. J. 7(5): 258–263.
Chang, Y., Gao, Q., Cao, X., Wang, S., and Liu, X. (2019). Advances in research on active ingredients of Hippophae Rhamnoides Linn. and their effects on gastrointestinal microorganisms. Packag. Eng. 40(21): 15–22.
Chen, C., Gao, W., Ou-Yang, D., Zhang, J., and Kong, D. (2014). Three new flavonoids,hippophins K-M,from the seed residue of hippophae rhamnoides subsp. sinensis. Nat. Prod. Res. 28(1): 24–29.
Chen, Y., Guo, J., Guan, W., Wang, X., Chen, Z., Fu, Y., and Zhang, Z. (2023). Research progress on the comprehensive development and utilization of sea buckthorn. Food Res. Dev. 44(19): 201–207.
Cocetta, V., Cadau, J., Saponaro, M., Giacomini, I., Dall'Acqua, S., Sut, S., Catanzaro, D., Orso, G., Miolo, G., Lmenilli, L., Pagetta, A., Ragazzi, E., and Montopoli, M. (2021). Further assessment of Salvia haenkei as an innovative strategy to counteract skin photo - aging and restore the barrier integrity. Aging 13(1): 89–103.
Criste, A., Urcan, C., Bunea, A., Furtuna, F., Olah, N., Madden, R., and Corcionivoschi, N. (2020). Phytochemical composition and biological activity of berries and leaves from four romanian sea buckthorn (Hippophae Rhamnoides L.) varieties. Molecules 25(5): 1170.
Cui, Y., Li, F., Zhu, X., Xu, J., Muhammad, A., Chen, Y., Li, D., Liu, B., Wang, C., Wang, Z., Ma, S., Liu, X., and Shi, Y. (2022). Alfalfa saponins inhibit oxidative stress-induced cell apoptosis through the MAPK signaling pathway. Redox Rep. 27(1): 1–8.
Deng, B., Chen, J., Li, X., Lou, K., Zhou, L., Zhou, Y., and Xiao, Z. (2024). Exploring the mechanism of action of sea buckthorn in the treatment of alcoholic liver injury based on network pharmacology. Sci. Technol. Food Ind. 45(14): 25–33.
Ding, Z., Ye, J., Ma, J., He, X., Wang, Z., Liang, L., Zhou, J., Gao, H., Li, Y., and He, R. (2023). Research Progress in chemical constituents and pharmacological effects of Hippophae rhamnoides leaves. World Chin. Med. 18(5): 714–720.
Dong, M., Zhang, J., Tian, D., Nie, W., and Dong, B. (2024). A review on the cardiovascular pharmacological action of Shaji. Clin. J. Chin. Med. 16(02): 67–71.
Dong, S., Chen, Y., and Gao, Q. (2020). Research progress on bioactive compounds and function of sea buckthorn berry. China Brew. 39(2): 26–32.
Fu, G., Bi, J., Liu, C., Yue, L., Li, X., Liu, J., and Wang, Y. (2022). Evaluation of the comprehensive quality of sea buckthorn fruit in four areas of China. Transactions of the CSAE 38(21): 249–260.
Fu, Y., Wang, Y., Liu,, Zhang, M., Wu, D., Li, C., Liu, P., Zhang, L., Sun, Z., Feng, X., Li, Y., and Wang, Y. (2016). Using the method of UPLC-ESIMS to simultaneously determine the major five components in seabuckthorn flavone. J. Inn. Mong. Agric. Univ. 37(03): 129–133.
Gao, S., Guo, Q., Qin, C., Shang, R., and Zhang, Z. (2017). Sea buckthorn fruit oil extract alleviates insulin resistance through the PI3k/Akt signaling pathway in type 2 diabetes mellitus cells and rats. J. Agric. Food Chem. 65(7): 1328–1336.
Ge, L., Li, Q., Li, S., Gong, H., and Tiang, S. (2023). Optimization in extraction process of total polyphenols from Hippophae rhamnoides L. fruits and its stability. Chem. Bioeng. 2023(03): 30–35.
Gornas, P., Misina, I., Krasnpva, I., and Seglia, D. (2016). Tocopherol and tocotrienol contents in the sea buckthorn berry beverages in baltic countries: Impact of the cultivar. Fruits 71(6): 399–405.
Guo, R., Chang, X., Guo, X., Brennan, C., L, T., Fu, X., and Liu, R. (2017). Phenolic compounds, antioxidant activity, antiproliferative activity and bioaccessibility of sea buckthorn (Hippophae rhamnoides L.) berries as affected by in vitro digestion. Food Funct. 8(11): 4229–4240.
Guo, R., Guo, X., LI, T., Fu, X., and Liu, R. (2017). Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophae rhamnoides L.) berries. Food Chem. 221: 997–1003.
Hao, P., Cao, R., Zhou, H., Ding, R., Bai, X., and Xue, Z. (2023). Sea-buckthorn slows down-regulation of CYP 2C in mice with liver injury by BCG-induced via PXR/NF-κB pathway. Chin. Pharm. Bull. 39(12): 2320–2324.
Hao, Y., Xiao, Y., Yan, J., Yang, R., Huang, R., Zheng, C., Huang, C., Chen, X., Xiao, W., and Lei, J. (2022). The total flavonoids of Hippophae rhamnoides stimulate recruitment of CD8+ T cells into the tumor microenvironment promoting cancer immune control. Phytomedicine Plus 2(1): 100204.
Hu, G., Gao, S., Wang, R., Lei, M., He, Y., Liu, W., and Gao, X. (2021). Research on development and utilization of active substances in seabuckthorn. Food Res. Dev. 42(03): 218–224.
Ji, M., Heeweon, L., Guijae, Y., Kim, D., Kim, Y., Choi, I., Cha, Y., and Ha, S. (2023). Hippophae rhamnoides L. leaf extracts alleviate diabetic nephropathy via attenuation of advanced glycation end product-induced oxidative stress in db/db mice. Food Funct. 14(18): 8396–8408.
Kong, H., Chen, X., and Li, X. (2024). Mechanism of sea-buckthorn flavone on myocardial protection in rats after long-term exhausted exercise. Nat. Prod. Res. Dev. 36(06): 954–962.
Kou, J., Shi, L., Zhang, Y., Huang, C., and Ma, T. (2023). Effects of sea buckthorn fermented tea on blood lipid and gut microbiota in high-fat diet rats. Food Ferment. Ind. 49(09): 49–56.
Li, H., Peng, X., Wu, P., Dai, Z., Wang, J., Zhan, Y., and He, X. (2019). Progress on effects of plant polyphenols on intestinal microecology. Food Mach. 35(06): 222–236.
Li, Y., Li, R., Lu, S., Chen, H., and Li, X. (2024). Human experimental study on regulation of intestinal flora by fructooligosaccharide seabuckthorn black tea powder. Food Ind. 45(01): 83–87.
Lin, J., Liu, H., Liang, J., Li, X., Xie, G., and Liu, W. (2024). Exploring the mechanism of sea buckthorn in immune treatment of liver injury based on network pharmacology and molecular docking. Food Ferment. Sci. Technol. 60(02): 53–63.
Lin, N., Tian, H., Gao, Z., Wang, Q., Xu, G., and Ji, C. (2024). New progress on preperation, structural characterization and pharmacological activities of sea buckthorn polysaccharides. Chin. Pharm. J. 59(01): 757–767.
Liu, H., Shi, D., Liu, P., and Cui, C. (2022). Characteristics of seabuckthorn seed protein and its hypoglycemic effect on db /db diabetic mice. Sci. Technol. Food Ind. 41(07): 309–319.
Liu, J., Xu, S., Song, Q., He, X., Han, L., and Huang, X. (2012). Chemical constituents from seeds of Hippophae rhamnoides.. Asia-Pacific Tradit. Med. 8(04): 26–28.
Liu, Q., Zhang, Z., Liu, S., and Lu, F. (2025). Exploration of the pharmacological activities and medicinal values of different parts of Sea buckthorn. Front. Pharm. Sci. 29(05): 802–815.
Liu, X., Li, N., Zhang, J., Zhang, Y., Zhong, H., Yu, S., Xia, Q., and Guan, R. (2025). Research progress on extraction, purification, and bioactivity of sea buckthorn flavonoids. Food Ferment. Ind. doi: 10.13995/j.cnki.11-1802/ts.036167.
Liu, Y., Bao, X., Wang, J., Wei, C., and Bai, Y. (2021). Anti exercise fatigue and antioxidant of polysaccharide from Hippophae rhamnoides. Sci. Technol. Food Ind. 42(10): 321–326.
Liu, Y., Lian, Y., Wang, Y., Li, Y., and Xiao, P. (2014). Review of research and development and significant effect of Hippophae rhamnoides. China J. Chin. Mater. Med. 39(09): 1547–1552.
Luo, H., Hu, Y., Wan, F., Liu, Z., Li, Q., and Wang, C. (2023). Research progress on comprehensive utilization of sea buckthorn. Agric. Products Process. 2023(17): 65–73.
Mahahan, R., Attri, S., Sharma, K., Singh, N., Sharma, D., and Goel, G. (2018). Statistical assessment of DNA extraction methodology for culture-independent analysis of microbial community associated with diverse environmental samples. Mol. Biol. Rep. 45(3): 222–236.
Marciniak, B., Kontek, R., Żuchowski, J., and Stochmal, O. (2021). Novel bioactive properties of low-polarity fractions from sea-buckthorn extracts (Elaeagnus rhamnoides (L.) A. Nelson)-(in vitro). Biomed. Pharmacother. 135: 111141.
Maria, D., Elena, C., Isanela, T., Mihai, S., Popescu, I., Albulescu, L., Constantin, N., Cucolea, I., Costache, T., Rambu, D., Enciu, A., Hinescu, M., and Tanase, C. (2021). A fatty acid fraction purified from sea buckthorn seed oil has regenerative properties on normal skin cells. ront. Pharmacol. 12: 737571.
Ning, Z., Niu, G., Zhu, L., Zhu, D., Wei, W., and Wang, S. (2021). Research progress on the active compounds of sea buckthorn and their physiological functions and utilization. Food & Machinery 37(11): 221–240.
Niyazi, Liu, X., Abulaihaiti, A., and Rozi, P. (2020). Research advances on chemical constituents and pharmacological effects of various parts of Hippophae rhamnoides. Chin. J. Ethnomed. Ethnopharmacy 29(12): 72–76.
Olas, B. (2016). Seabuckthorn as a source of important bioactive compounds in cardiovascular diseases. Food Chem. Toxicol. 97: 199–204.
Rana, A., and Gulliya, B. (2019). Chemistry and pharmacology of flavonoids-a review. Indian J. Pharm. Educ. Res. 53(1): 8–20.
Ren, L., Liu, Z., Dong, Wang, H., and Hu, N. (2023). Recent progress on the flavonoid components and pharmacological effects of Hippophae rhamnoides L. Chin. J. Med. Chem. 33(08): 598–617.
Ren, R., Li, N., Su, C., Wang, Y., Zhao, X., Yang, L., Li, Y., Zhang, B., Chen, J., and Ma, X. (2020). The bioactive components as well as the nutritional and health effects of sea buckthorn. RSC Adv. 10(73): 44654–44671.
Saeidi, K., Alirezlu, A., and Akbari, Z. (2016). Evaluation of chemical constitute, fatty acids and antioxidant activity of the fruit and seed of sea buckthorn (Hippophae rhamnoides L.) grown wild in Iran. Nat. Prod. Res. 30(3): 366–368.
Shang, Y., Wang, Q., Wu, Y., and Yu, X. (2023). Seabuckthorn Jiaosu: preparation and lipid-lowering performance in vitro. Food Res. Dev. 44(22): 61–67.
Sharma, B., Sahoo, D., and Deswal, R. (2018). Single-step purification and characterization of antifreeze proteins from leaf and berry of a freeze-tolerant shrub seabuckthorn(Hippophaer hamnoides). J. Sep. Sci. 41(20): 3938–3945.
Sheng, C., Guo, Y., Zhang, B., Yang, Y., Ma, J., Zhang, X., and Zhang, D. (2021). Study on protective effect of seabuckthorn sterol on rats with acute liver injury induced by carbon tetrachloride. China Food Addit. 32(04): 63–69.
Shi, Y. (2025). Research progress on chemical composition of sea buckthorn. Guangzhou Chem. Ind. 53(1): 27–38.
Shi, Y., Xu, W., Zhao, L., Li, M., and Zhang, A. (2024). Effects of seabuckthorn polysaccharide on serum immunity, liver antioxidant and anti-inflammatory function induced by lipopolysaccharide in mice. Feed Ind. 45(19): 93–98.
Shu, D., Xiong, J., Liu, Z., and Cui, C. (2020). Hypoglycemic activity and renal protection effect of seabuckthorn seed protein peptide in db /db mice. Sci. Technol. Food Ind. 41(21): 317–321.
Tan, L., Zhao, J., Ma, J., Ji, T., Dong, Q., and Shen, J. (2018). Analysis of nutritional compositions and nutritional quality evaluation in different parts of Yushu Hippophae (Hippophae rhamnoides L. Subsp. sinensis). Nat. Prod. Res. Dev. 30(05): 807–816.
Tang, M. (2022). Application of Sea buckthorn leaf polyphenols in apple juice preservation. Modern Food 28(1): 93–95.
Tascioglu, A., Panierl, E., Stepanic, V., Gurer-Orhan, H., and Saso, L. (2021). Involvement of NRF2 in breast cancer and possible therapeutical role of polyphenols and melatonin. Moleculars 26(7): 1–18.
Tian, Y., Puganen, A., Alakomi, H.L., Uusitupa, A., Saarela, M., and Yang, B. (2018). Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Res. Int. 106: 291–303.
Tian, J. (2023). Study on the antioxidant activity of polyphenol extracts from seabuckthorn leaves. Food Eng. 2023(2): 48–50.
Wang, D., Li, W., Yao, Y., Yuan, F., Yuan, S., and Peng, Q. (2022). Research progress on extraction and functional activity of sea buckthorn protein and polypeptides. Sci. Technol. Food Ind. 43(03): 447–455.
Wang, F., Zhang, B., Zhang, X., Zhao, P., Li, B., Huo, N., Qi, Y., Qin, X., and Guo, J. (2025). Regulatory effects of sea buckthorn mixed oil on chronic alcohol-induced liver injury and intestinal microbiota in mice. J. Shanxi Agric. Univ. 45(02): 39–49.
Wang, H., Xu, Z., Gao, X., Qiang, Y., and Yao, W. (2007). Efficacy of total flavonoids of Hippophae rhamnoides L. on injuried neurons. Chin. J. Biochem. Pharm. 28(3): 158–163.
Wang, K., Xu, Z., and Liao, X. (2022). Bioactive compounds, health benefits and functional food products of sea buckthorn: A review. Crit. Rev. Food Sci. Nutr. 62(24): 6761–6782.
Wang, X., Kong, Z., and Zhao, Y. (2022). Effect of solvent polarity on composition, in vitro hypoglycemic and hypolipidemic activities of extracts from seabuckthorn (Hippophae rhanmoides L.) residue. Fine Chem. 39(10): 2060–2068.
Wu, C., Liu, Y., Li, Y., Hao, Q., He, X., and Wang, J. (2024). Protective effect of polysaccharides from seabuckthorn against lioppolysaccharide-induced acute liver injury in mice. J. Anh. Sci. Technol. 38(1): 88–96.
Xiong, Q., Wei, D., Wen, Y., Chen, Q., Liu, L., Long, C., Han, C., and Dai, X. (2022). Research progress on the chemical composition and pharmacological effects of sea buckthorn fruit. J. North. Agric. 52(03): 57–63.
Xu, M., Liang, K., Gong, B., Weng, B., and Sun, Y. (2023). Research progress on the mechanism of medicinal and food homologous traditional Chinese medicine to prevent liver injury. China Mod. Med. 30(12): 34–43.
Yan, H., Bie, W., Cui, F., Feng, X., Qi, H., Li, Z., and Zhang, Z. (2021). Analysis of carotenoids content in sea buckthorn by high performance liquid chromatography. J. Food Saf. Food Qual. 12(11): 4459–4466.
Yuan, H., Shi, F., Meng, L., and Wang, W. (2018). Effect of sea buckthorn protein on the intestinal microbial community in streptozotocin-induced diabetic mice. Int. J. Biol. Macromol. 107: 1168–1174.
Zargar, R., Raghuwanshi, P., Koul, A.L., Rastogi, A., Khajuria, P., Wahid, A., and Kour, S. (2022). Hepatoprotective effect of Seabuckthorn leaf-extract in lead acetate-intoxicated Wistar rats. Drug Chem. Toxicol. 45(1): 476–480.
Zhang, X., Song, L., Zhao, S., Wang, X., Zhou, K., and Wang, Y. (2017). Protective effect of polysaccharides from seabuckthorn against lioppolysaccharide-induced acute liver injury in mice. J. Inn. Mong. Agric. Univ. 38(3): 1–7.
Zhao, B., Xiang, X., Wang, W., Li, C., Wu, X., and Shen, J. (2018). Preparation of flavonoids from sea buckthorn and its inhibitory effect on human prostate cancer PC-3 cells in vitro. Nat. Prod. Res. Dev. 30(01): 27–160.
Zhao, Y., Zhang, L., and Tao, A. (2024). Research progress in extraction technology, structural characteristics and pharmacological activities of Hippophae rhamnoides polysaccharides. Chin. J. Exp. Tradit. Med. Formulae 30(11): 290–298.
Zhao, Z., Zhu, X., Feng, Z., Chen, H., Yu, L., Yan, D., Song, S., Shen, Y., and Tang, C. (2023). Physicochemical characteristic and antioxidant activity in vitro of seabuckthorn fruit polysaccharide. Sci. Technol. Food Ind. 44(13): 30–38.
Zhou, H., Hu, N., Dong, Q., and Wang, H. (2020). Research progress on the chemical composition and pharmacological action of Hippophae rhamnoides. West China J. Pharm. Sci. 35(02): 211–217.
Zhu, H., Lu, L., Guo, L., and Zhang, S. (2024). Bioactive components of Hippophae rhamnoides Linnaeus and their anti-cancer and anti-aging activities. J. Nantong Univ. 44(04): 367–374.
Zhu, X., Wang, W., and Cui, C. (2021). Hypoglycemic effect of hydrophobic bcaa peptides is associated with altered PI3K/Akt protein expression [J]. J. Agric. Food Chem. 69(15): 4446–4452.
Zielinsk, A., and Nowak, I. (2017). Abundance of active ingredients in seabuckthorn oil. Lipids Health Dis. 16(1): 95.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)