AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Pharmacokinetic profiles and improvement of resveratrol and derived stilbenes

Jie Penga,#Wenyu Zhangb,#Yixing ZhubHaiqing ZhubChi-Tang Hoa( )
Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China

#These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Numerous studies have demonstrated the health-promoting benefits of resveratrol and its close derivatives in various aspects of disease prevention and management, yet due to their highly conjugated 1,2-diphenylethylene structural skeleton, the in vivo application of stilbenoids could be limited. Therefore, the metabolic profiles of these stilbene compounds warrant further attention and investigation. The bioavailability of a nutrient or a drug is significantly influenced by ADME (absorption, distribution, metabolism and excretion). In this review, we summarize the study results of drug metabolism and pharmacokinetics (DMPK) profiles of resveratrol and its close oligomeric derivatives, including oxyresveratrol, piceatannol, pterostilbene, rhaponticin, rhapontigenin and 2,3,5,4′-tetrahydroxystilbene-2-O-β-glucopyranoside (THSG). This review also addressees explored delivery strategies, such as stilbenoids-loaded nanoparticles or Pickering emulsions, to enhance their aqueous solubility, stability, and thus bioavailability.

References

 

Aljabali, A.A.A., Bakshi, H.A., Hakkim, F.L., Haggag, Y.A., Al-Batanyeh, K.M., Al Zoubi, M.S., Al-Trad, B., Nasef, M.M., Satija, S., Mehta, M., Pabreja, K., Mishra, V., Khan, M., Abobaker, S., Azzouz, I.M., Dureja, H., Pabari, R.M., Dardouri, A.A.K., Kesharwani, P., Gupta, G., Dhar Shukla, S., Prasher, P., Charbe, N.B., Negi, P., Kapoor, D.N., Chellappan, D.K., Webba da Silva, M., Thompson, P., Dua, K., McCarron, P., and Tambuwala, M.M. (2020). Albumin Nano-Encapsulation of Piceatannol Enhances Its Anticancer Potential in Colon Cancer Via Downregulation of Nuclear p65 and HIF-1alpha. Cancers (Basel) 12: 113.

 

Ates, O., Cayli, S.R., Yucel, N., Altinoz, E., Kocak, A., Durak, M.A., Turkoz, Y., and Yologlu, S. (2007). Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats. J. Clin. NeuroSci. 14: 256–260.

 

Azzolini, M., La Spina, M., Mattarei, A., Paradisi, C., Zoratti, M., and Biasutto, L. (2014). Pharmacokinetics and tissue distribution of pterostilbene in the rat. Mol. Nutr. Food Res. 58: 2122–2132.

 

Baek, Y., Jeong, E.W., and Lee, H.G. (2023). Encapsulation of resveratrol within size-controlled nanoliposomes: Impact on solubility, stability, cellular permeability, and oral bioavailability. Colloids Surf. B Biointerfaces 224: 113205.

 

Bastianetto, S., Ménard, C., and Quirion, R. (2015). Neuroprotective action of resveratrol. Biochim. Biophys. Act. 1852: 1195–1201.

 

Bonnefont-Rousselot, D. (2016). Resveratrol and cardiovascular diseases. Nutrients 8: 250.

 

Breuss, J.M., Atanasov, A.G., and Uhrin, P. (2019). Resveratrol and its effects on the vascular system. Int. J. Mol. Sci. 20: 1523.

 

Cai, T.-T., Ye, X.-L., Li, R.-R., Chen, H., Wang, Y.-Y., Yong, H.-J., Pan, M.-L., Lu, W., Tang, Y., Miao, H., Snijders, A.M., Mao, J.-H., Liu, X.-Y., and Ding, D.-F. (2020). Resveratrol modulates the gut microbiota and inflammation to protect against diabetic nephropathy in mice. Front. Pharmacol. 11: 1249.

 

Carey, A.N., Fisher, D.R., Rimando, A.M., Gomes, S.M., Bielinski, D.F., and Shukitt-Hale, B. (2013). Stilbenes and anthocyanins reduce stress signaling in BV-2 mouse microglia. J. Agric. Food Chem. 61: 5979–5986.

 

Chan, C.-M., Chang, H.-H., Wang, V.-C., Huang, C.-L., and Hung, C.-F. (2013). Inhibitory effects of resveratrol on PDGF-BB-induced retinal pigment epithelial cell migration via PDGFRβ, PI3K/Akt and MAPK pathways. PLoS ONE 8: e56819.

 

Chang, J., Rimando, A., Pallas, M., Camins, A., and Casadesus, G. (2011). Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol. Aging. 33(9): 2062–2071.

 

Chen, G.T., Yang, M., Chen, B.B., Song, Y., Zhang, W., and Zhang, Y. (2016). 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucoside exerted protective effects on diabetic nephropathy in mice with hyperglycemia induced by streptozotocin. Food Funct. 7: 4628–36.

 

Chen, W., Yeo, S., Elhennawy, M.A., and Lin, H.S. (2016). Oxyresveratrol: A bioavailable dietary polyphenol. J. Funct. Foods. 22: 122–131.

 

Chen, Y., Meng, J., Li, H., Wei, H., Bi, F., Liu, S., Tang, K., Guo, H., and Liu, W. (2019). Resveratrol exhibits an effect on attenuating retina inflammatory condition and damage of diabetic retinopathy via PON1. Exp. Eye Res. 181: 356–66.

 

Chen, Y., Niu, J., Li, L., Li, Z., Jiang, J., Zhu, M., Dong, T., Zhang, J., Shi, C., and Xu, P. (2020). Polydatin executes anticancer effects against glioblastoma multiforme by inhibiting the EGFR-AKT/ERK1/2/STAT3-SOX2/Snail signaling pathway. Life Sci. 258: 118158.

 

Chung, I.-M., Subramanian, U., Thirupathi, P., Venkidasamy, B., Samynathan, R., Gangadhar, B.H., Rajakumar, G., and Thiruvengadam, M. (2020). Resveratrol nanoparticles: A promising therapeutic advancement over native resveratrol. Processes 8: 458.

 

Dai, Y., Lim, J.X., Yeo, S.C.M., Xiang, X., Tan, K.S., Fu, J.H., Huang, L., and Lin, H.S. (2020). Biotransformation of Piceatannol, a dietary resveratrol derivative: Promises to human health. Mol. Nutr. Food Res. 64: e1900905.

 

Das, S., Lin, H.S., Ho, P.C., and Ng, K.Y. (2008). The impact of aqueous solubility and dose on the pharmacokinetic profiles of resveratrol. Pharm. Res. 25: 2593–2600.

 

Dellinger, R.W., Garcia, A.M., and Meyskens, F.L. Jr. (2014). Differences in the glucuronidation of resveratrol and pterostilbene: altered enzyme specificity and potential gender differences. Drug Metab Pharmacokinet 29: 112–119.

 

Deng, L., Li, Y., Zhang, X., Chen, B., Deng, Y., and Li, Y. (2015). UPLC-MS method for quantification of pterostilbene and its application to comparative study of bioavailability and tissue distribution in normal and Lewis lung carcinoma bearing mice. J. Pharm. Biomed. Anal. Links 114: 200–207.

 

Dong, L.H., Guo, P.P., Yan, W.Y., Zhang, Z.J., and Wang, C.Y. (2014). Comparative study on pharmacokinetics and tissue distribution of cis- and trans-2,3,5,4′-Tetrahydroxystilbene-2-O-beta-D-glucosides in mice. Zhong Yao Cai 37: 1627–1632.

 

Dong, Y., Wan, G., Yan, P., Qian, C., Li, F., and Peng, G. (2019). Fabrication of resveratrol coated gold nanoparticles and investigation of their effect on diabetic retinopathy in streptozotocin induced diabetic rats. J. Photochem. Photobiol. B. 195: 51–57.

 

Du, L., Qian, X., Li, Y., Li, Z.-X., He, L.-L., Xu, L., Liu, Y.-Q., Li, C.-C., Ma, P., Shu, F.-L., Lu, Q., and Yin, X.-X. (2021). Sirt1 inhibits renal tubular cell epithelial-mesenchymal transition through YY1 deacetylation in diabetic nephropathy. Acta Pharmacol. Sin. 42: 242–51.

 

Fan, D., Liu, C., Zhang, Z., Huang, K., Wang, T., Chen, S., and Li, Z. (2022). Progress in the preclinical and clinical study of resveratrol for vascular metabolic disease. Molecules 27: 7524.

 

Fang, W.-J., Wang, C.-J., He, Y., Zhou, Y.-L., Peng, X.-D., and Liu, S.-K. (2018). Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol. Sin. 39: 59–73.

 

Giordo, R., Nasrallah, G.K., Posadino, A.M., Galimi, F., Capobianco, G., Eid, A.H., and Pintus, G. (2021). Resveratrol-elicited PKC inhibition counteracts NOX-mediated endothelial to mesenchymal transition in human retinal endothelial cells exposed to high glucose. Antioxidants (Basel) 10: 224.

 

Gong, W., Li, J., Chen, W., Feng, F., and Deng, Y. (2020). Resveratrol inhibits lipopolysaccharide-induced extracellular matrix accumulation and inflammation in rat glomerular mesangial cells by Sphk1/S1P2/NF-κB pathway. Diabetes Metab. Syndr. Obes. 13: 4495–505.

 

Guo, R., Liu, W., Liu, B., Zhang, B., Li, W., and Xu, Y. (2015). Sirt1 suppresses cardiomyocyte apoptosis in diabetic cardiomyopathy: An insight into endoplasmic reticulum stress response mechanism. Int. J. Cardiol. 191: 36–45.

 

Ha, E.S., Choi, D.H., Baek, I.H., Park, H., and Kim, M.S. (2021). Enhanced oral bioavailability of resveratrol by using neutralized Eudragit E solid dispersion prepared via spray drying. Antioxidants (Basel) 10: 90.

 

Hao, J., Gao, Y., Zhao, J., Zhang, J., Li, Q., Zhao, Z., and Liu, J. (2015). Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using Box-Behnken design. AAPS PharmSciTech 16: 118–128.

 

He, J., Guo, F., Lin, L., Chen, H., Chen, J., Cheng, Y., and Zheng, Z.P. (2018). Investigating the oxyresveratrol β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin complexes: The effects on oxyresveratrol solution, stability, and antibrowning ability on fresh grape juice. Lebensm. Wiss. Technol. 100: 263–270.

 

He, H., Zhao, Y., Chen, X., Zheng, Y., Wu, X., Wang, R., Li, T., Yu, Q., Jing, J., Ma, L., Ren, W., Han, D., and Wang, G. (2007). Quantitative determination of trans-polydatin, a natural strong anti-oxidative compound, in rat plasma and cellular environment of a human colon adenocarcinoma cell line for pharmacokinetic studies. J. Chromatogr. B. 855: 145–151.

 

He, T., Xiong, J., Nie, L., Yu, Y., Guan, X., Xu, X., Xiao, T., Yang, K., Liu, L., Zhang, D., Huang, Y., Zhang, J., Wang, J., Sharma, K., and Zhao, J. (2016). Resveratrol inhibits renal interstitial fibrosis in diabetic nephropathy by regulating AMPK/NOX4/ROS pathway. J. Mol. Med. 94: 1359–71.

 

Hornedo-Ortega, R., Cerezo, A.B., de Pablos, R.M., Krisa, S., Richard, T., Garcia-Parrilla, M.C., and Troncoso, A.M. (2018). Phenolic Compounds Characteristic of the Mediterranean Diet in Mitigating Microglia-Mediated Neuroinflammation. Front. Cell. Neurosci. 12: 373.

 

Hou, C.-Y., Tain, Y.-L., Yu, H.-R., and Huang, L.-T. (2019). The effects of resveratrol in the treatment of metabolic syndrome. Int. J. Mol. Sci. 20: 535.

 

Hu, N., Mei, M., Ruan, J., Wu, W., Wang, Y., and Yan, R. (2014). Regioselective glucuronidation of oxyresveratrol, a natural hydroxystilbene, by human liver and intestinal microsomes and recombinant UGTs. Drug Metab. Pharmacokinet. 29: 229–236.

 

Huang, B., Xue, L., Wu, Y., and Jiang, Q. (2015). Effect and mechanism of polydatin on diabetic myocardial hypertrophy in mice. Zhongguo Zhong Yao Za Zhi 40: 4256–4261.

 

Huang, D.D., Shi, G., Jiang, Y., Yao, C., and Zhu, C. (2020). A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed. Pharmaco ther. 125: 109767.

 

Huang, H., Chen, G., Lu, Z., Zhang, J., and Guo, D.-A. (2010). Identification of seven metabolites of oxyresveratrol in rat urine and bile using liquid chromatography/tandem mass spectrometry. Biomed. Chromatogr BMC. 24: 426–432.

 

Huang, H., Zhang, J., Chen, G., Lu, Z., Wang, X., Sha, N., Shao, B., Li, P., and Guo, D.-A. (2008). High performance liquid chromatographic method for the determination and pharmacokinetic studies of oxyresveratrol and resveratrol in rat plasma after oral administration of Smilax china extract. Biomed. Chromatogr BMC. 22: 421–427.

 

Huang, Q.-H., Xu, L.-Q., Liu, Y.-H., Wu, J.-Z., Wu, X., Lai, X.-P., Li, Y.-C., Su, Z.-R., Chen, J.-N., and Xie, Y.-L. (2017). Polydatin protects rat liver against ethanol-induced injury: involvement of CYP2E1/ROS/Nrf2 and TLR4/NF-κB p65 pathway. Evid. Based Complement. Altern. Med. 2017: 7953850.

 

Huang, S.-S., Ding, D.-F., Chen, S., Dong, C.-L., Ye, X.-L., Yuan, Y.-G., Feng, Y.-M., You, N., Xu, J.-R., Miao, H., You, Q., Lu, X., and Lu, Y.-B. (2017). Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy. Sci. Rep. 7: 45692.

 

Huang, X.T., Li, X., Xie, M.L., Huang, Z., Huang, Y.X., Wu, G.X., Peng, Z.R., Sun, Y.N., Ming, Q.L., Liu, Y.X., Chen, J.P., and Xu, S.N. (2019). Resveratrol: Review on its discovery, anti-leukemia effects and pharmacokinetics. Chem. Biol. Interact. 306: 29–38.

 

Imtiyaz, K., Shafi, M., Fakhri, K.U., Uroog, L., Zeya, B., Anwer, S.T., and Rizvi, M.M.A. (2024). Polydatin: A natural compound with multifaceted anticancer properties. J. Tradit. Complementary. Med.

 

Inagaki, H., Ito, R., Setoguchi, Y., Oritani, Y., and Ito, T. (2016). Administration of piceatannol complexed with α-cyclodextrin improves its absorption in rats. J. Agric. Food Chem. 64: 3557–3563.

 

Jia, Y.-N., Peng, Y.-L., Zhao, Y.-P., Cheng, X.-F., Zhou, Y., Chai, C.-L., Zeng, L.-S., Pan, M.-H., and Xu, L. (2019). Comparison of the Hepatoprotective Effects of the Three Main Stilbenes from Mulberry Twigs. J. Agric. Food Chem. 67: 5521–5529.

 

Johnson, J., Nihal, M., Siddiqui, I.A., Scarlrtt, C.O., Bailey, H.H., Mukhtar, H., and Ahmad, N. (2011). Enhancing the bioavailability of resveratrol by combining it with Piperine. Mol. Nutr. Food Res. 55: 1169–1176.

 

Joseph, J.A., Fisher, D.R., Cheng, V., Rimando, A.M., and Shukitt-Hale, B. (2008). Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. J. Agric. Food Chem. 56: 10544–10551.

 

Junsaeng, D., Anukunwithaya, T., Phanit Songvut, P., Sritularak, B., Likhitwitayawuid, K., and Khemawoot, P. (2019). Comparative pharmacokinetics of oxyresveratrol alone and in combination with piperine as a bioenhancer in rats. BMC Complement. Altern. Med. 19: 235.

 

Kageura, T., Matsuda, H., Morikawa, T., Riguchida, I., Harima, S., Oda, M., and Yoshikawa, M. (2001). Inhibitors from rhubarb on lipopolysaccharide-induced nitric oxide production in macrophages: structural requirements of stilbenes for the activity. Bioorg. Med. Chem. 9: 1887–1893.

 

Kapetanovic, I.M., Muzzio, M., Huang, Z., Thompson, T.N., and McCormick, D.L. (2011). Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother. Pharmacol. 68: 593–601.

 

Kawakami, S., Kinoshita, Y., Maruki-Uchida, H., Yanae, K., Sai, M., and Ito, T. (2014). Piceatannol and its metabolite, isorhapontigenin, induce SIRT1 expression in THP-1 human monocytic cell line. Nutrients 6: 4794–4804.

 

Kim, Y.H., Kim, Y.S., Roh, G.S., Choi, W.S., and Cho, G.J. (2012). Resveratrol blocks diabetes-induced early vascular lesions and vascular endothelial growth factor induction in mouse retinas. Acta Ophthalmol. 90: e31–7.

 

Koh, Y.-C., Lien, Y-T., Chou, Y.-T., Ho, C.-T., and Pan, M.-H. (2020). A review: Potential of resveratrol and its analogues to mitigate diseases via gut microbial modulation. J. Food Bioact. 12: 97–105.

 

Kolodziejczyk-Czepas, J., and Czepas, J. (2019). Rhaponticin as an anti-inflammatory component of rhubarb: a minireview of the current state of the art and prospects for future research. Phytochem Rev. 18: 1375–1386.

 

Kosuru, R., Kandula, V., Rai, U., Prakash, S., Xia, Z., and Singh, S. (2018). Pterostilbene decreases cardiac oxidative stress and inflammation via activation of AMPK/Nrf2/HO-1 pathway in fructose-fed diabetic rats. Cardiovasc. Drugs. Ther. 32: 147–63.

 

Kumar, A., Kaundal, R.K., Iyer, S., and Sharma, S.S. (2007). Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci. 80: 1236–44.

 

Kutil, Z., Kvasnicova, M., Temml, V., Schuster, D., Marsik, P., Cusimamani, E.F., Lou, J.-D., Vanek, T., and Landa, P. (2015). Effect of dietary stilbenes on 5-lipoxygenase and cyclooxygenases activities in vitro. Int. J. Food Prop. 18: 471–1477.

 

Lai, W.F., Tang, R., and Wong, W.T. (2020). Ionically crosslinked complex gels loaded with oleic acid-containing vesicles for transdermal drug delivery. Pharmaceutics 12: 725.

 

Li, H., Shi, Y., Wang, X., Li, P., Zhang, S., Wu, T., Yan, Y., Zhan, Y., Ren, Y., Rong, X., Xia, T., Chu, M., and Wu, R. (2019). Piceatannol alleviates inflammation and oxidative stress via modulation of the Nrf2/HO-1 and NF-κB pathways in diabetic cardiomyopathy. Chem. Biol. Interact. 310: 108754.

 

Li, J., Wang, B., Zhou, G., Yan, X., and Zhang, Y. (2018). Tetrahydroxy stilbene glucoside alleviates high glucose-induced MPC5 podocytes injury through suppression of NLRP3 inflammasome. Am. J. Med. Sci. 355: 588–96.

 

Li, J., Yu, S., Ying, J., Shi, T., and Wang, P. (2017). Resveratrol prevents ROS-induced apoptosis in high glucose-treated retinal capillary endothelial cells via the activation of AMPK/Sirt1/PGC-1α pathway. Oxi. Med. Cell. Longev. 2017: 7584691.

 

Li, R.-P., Wang, Z.-Z., Sun, M.-X., Hou, X.-L., Sun, Y., Deng, Z.-F., and Xiao, K. (2012). Polydatin protects learning and memory impairments in a rat model of vascular dementia. Phytomedicine 19: 677–681.

 

Li, Y., Shin, Y.G., Yu, C., Kosmeder, J.W., Hirschelman, W.H., Pezzuto, J.M., and van Breemen, R.B. (2003). Increasing the throughput and productivity of Caco-2 cell permeability assays using liquid chromatography-mass spectrometry: application to resveratrol absorption and metabolism. Comb. Chem. High Throughput Screen 6: 757–767.

 

Li, Y.-R., Li, S., and Lin, C.-C. (2018). Effect of resveratrol and pterostilbene on aging and longevity. Biofactors 44: 69–82.

 

Liang, X., Sun, Y., Zeng, W., Liu, L., Ma, X., Zhao, Y., and Fan, J. (2013). Synthesis and biological evaluation of a folate-targeted rhaponticin conjugate. Bioorg. Med. Chem. 21: 178–185.

 

Likhitwitayawuid, K. (2021). Oxyresveratrol: Sources, productions, biological activities, pharmacokinetics, and delivery systems. Molecules 26: 4212.

 

Lin, W.S., Leland, J.V., Ho, C.T., and Pan, M.H. (2020). Occurrence, bioavailability, anti-inflammatory, and anticancer effects of pterostilbene. J. Agric. Food. Chem. 68: 12788–12799.

 

Liu, K., Liu, J., Xu, A., and Ding, J. (2024). The role of polydatin in inhibiting oxidative stress through SIRT1 activation: A comprehensive review of molecular targets. J. Ethnopharmacol. 331: 118322.

 

Liu, Q., Chen, J., Qin, Y., Jiang, B., and Zhang, T. (2019). Encapsulation of pterostilbene in nanoemulsions: Influence of lipid composition on physical stability, in vitro digestion, bioaccessibility, and Caco-2 cell monolayer permeability. Food Func. 10: 6604–14.

 

Liu, S., Yang, Q., Zhang, J., Yang, M., Wang, Y., Sun, T., Ma, C., and El-Aty, A.M.A. (2022). Enhanced stability of stilbene-glycoside-loaded nanoparticles coated with carboxymethyl chitosan and chitosan hydrochloride. Food Chem. 372: 131343.

 

Liu, Y., Lang, H., Zhou, M., Huang, L., Hui, S., Wang, X., Chen, K., and Mi, M. (2020). The preventive effects of pterostilbene on the exercise intolerance and circadian misalignment of mice subjected to sleep restriction. Mol. Nutr. Food. Res. 64: e1900991.

 

Long, T., Wang, L., Yang, Y., Yuan, L., Zhao, H., Chang, C.-C., Yang, G., Ho, C.-T., and Li, S. (2019). Protective Effect of Trans-2,3,5,4′-tetrahydroxystilbene 2-O-β-D-glucopyranoside on Liver Fibrosis and Renal Injury Induced by CCl4 via Activating p-ERK1/2 and p-Smad1/2. Food Funct. 10: 5115–5123.

 

Lv, R., Du, L., Liu, X., Zhou, F., Zhang, Z., and Zhang, L. (2019). Polydatin alleviates traumatic spinal cord injury by reducing microglial inflammation via regulation of iNOS and NLRP3 inflammasome pathway. Int. Immunopharmacol. 70: 28–36.

 

Lv, R., Du, L., Zhang, L., and Zhang, Z. (2019). Polydatin attenuates spinal cord injury in rats by inhibiting oxidative stress and microglia apoptosis via Nrf2/HO-1 pathway. Life Sci. 217: 119–127.

 

Malaguarnera, L. (2019). Influence of resveratrol on the immune response. Nutrients 11: 946.

 

Malik, S.A., Acharya, J.D., Mehendale, N.K., Kamat, S.S., and Ghaskadbi, S.S. (2019). Pterostilbene reverses palmitic acid mediated insulin resistance in HepG2 cells by reducing oxidative stress and triglyceride accumulation. Free Radic. Res. 53: 815–827.

 

Mamadou, G., Charrueau, C., Dairou, J., Limas-Nzouzi, N., Eto, B., and Ponchel, G. (2017). Increased intestinal permeation and modulation of presystemic metabolism of resveratrol formulated into self-emulsifying drug delivery systems, Int. J. Pharm. 521: 150.

 

Mohseni, R.Z., ArabSadeghabadi, N., Ziamajidi, R., Abbasalipourkabir, A., and RezaeiFarimani, A. (2019). Oral administration of resveratrol-loaded solid lipid nanoparticle improves insulin resistance through targeting expression of SNARE proteins in adipose and muscle tissue in rats with type 2 diabetes. Nanoscale Res. Lett. 14: 227.

 

Murias, M., Jäger, W., Handler, N., Erker, T., Horvath, Z., Szekeres, T., Nohl, H., and Gille, L. (2005). Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure-activity relationship. Biochem. Pharmacol. 69: 903–912.

 

Navarro-Orcajada, S., Vidal-Sánchez, F.J., Conesa, I., Matencio, A., and López-Nicolás, J.M. (2023). Improvement of the physicochemical limitations of rhapontigenin, a cytotoxic analogue of resveratrol against colon cancer. Biomolecules 13(8): 1270.

 

Ngoc, T.M., Minh, P.T., Hung, T.M., Thuong, P.T., Lee, I., Min, B.S., and Bae, K. (2008). J. Arch. Pharmacal Res. 31: 598–605.

 

Pandita, D., Kumar, S., Poonia, N., and Lather, V. (2014). Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res. Int. 62: 1165–1174.

 

Pasinetti, G.M., Wang, J., Ho, L., Zhao, W., and Dubner, L. (2015). Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim. Biophys. Acta, Mol. Basis Dis. 1852: 1202–1208.

 

Pecyna, P., Wargula, J., Murias, M., and Kucinska, M. (2020). More than resveratrol: New insights into stilbene-based compounds. Biomolecules. 10: 1111.

 

Penalva, R., Esparza, I., Larraneta, E., Gonzalez-Navarro, C.J., Gamazo, C., and Irache, J.M. (2015). Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. J. Agric. Food Chem. 63: 5603–5611.

 

Peng, J., Lu, C., Luo, Y., Su, X., Li, S., and Ho, C-T. (2024). Hypoglycemic effects and associated mechanisms of resveratrol and related stilbenes in diet. Food Funct. 15: 2381–2405.

 

Peng, R.M., Lin, G.R., Ting, Y., and Hu, J.Y. (2018). Oral delivery system enhanced the bioavailability of stilbenes: Resveratrol and pterostilbene. BioFactors (Oxford, England) 44: 5–15.

 

Peritore, A.F., D’Amico, R., Cordaro, M., Siracusa, R., Fusco, R., Gugliandolo, E., Genovese, T., Crupi, R., Di Paola, R., and Cuzzocrea, S. (2021). PEA/Polydatin: Anti-Inflammatory and antioxidant approach to counteract DNBS-induced colitis. Antioxidants 10: 464.

 

Qiao, Y., Gao, K., Wang, Y., Wang, X., and Cui, B. (2017). Resveratrol ameliorates diabetic nephropathy in rats through negative regulation of the p38 MAPK/TGF-β1 pathway. Exp. Ther. Med. 13: 3223–3230.

 

Rauf, A., Imran, M., Butt, M.S., Nadeem, M., Peters, D.G., and Mubarak, M.S. (2018). Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr. 58: 1428–1447.

 

Remsberg, C.M., Yáñez, J.A., Ohgami, Y., Vega-Villa, K.R., Rimando, A.M., and Davies, N.M. (2008). Pharmacometrics of pterostilbene: Preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother. Res. 22: 169–179.

 

Rokicki, D., Zdanowski, R., Lewicki, S., Leśniak, M., Suska, M., Wojdat, E., Skopińska-Różewska, E., and Skopiński, P. (2014). Inhibition of proliferation, migration and invasiveness of endothelial murine cells culture induced by resveratrol. Cent. Eur. J. Immunol. 39: 449–454.

 

Roupe, K.A., Yáñez, J.A., Teng, X.T., and Davies, N.M. (2006). Pharmacokinetics of selected stilbenes: Rhapontigenin, piceatannol and pinosylvin in rats. J. Pharm. Pharmacol. 58: 1443–1450.

 

Sadi, G., and Konat, D. (2016). Resveratrol regulates oxidative biomarkers and antioxidant enzymes in the brain of streptozotocin-induced diabetic rats. Pharm. Biol. 54: 1156–1163.

 

Sangsen, Y., Wiwattanawongsa, K., Likhitwitayawuid, K., Sritularak, B., Graidist, P., and Wiwattanapatapee, R. (2016). Influence of surfactants in self-microemulsifying formulations on enhancing oral bioavailability of oxyresveratrol: Studies in Caco-2 cells and in vivo. Int. J. Pharm. 498: 294–303.

 

Santos, A.C., Pereir, I., Pereira-Silva, M., Ferreira, L., Caldas, M., Collado-González, M., Magalhães, M., Figueiras, A., Ribeiro, A.J., and Veiga, F. (2019). Nanotechnology-based formulations for resveratrol delivery: Effects on resveratrol in vivo bioavailability and bioactivity. Colloids Surf. B Biointerfaces 180: 127–140.

 

Sergides, C., Chirilă, M., Silvestro, L., Pitta, D., and Pittas, A. (2015). Bioavailability and safety study of resveratrol 500 mg tablets in healthy male and female volunteers. Exp. Ther. Med. 11: 164–170.

 

Setoguchi, Y., Oritani, Y., Ito, R., Inagaki, H., Maruki-Uchida, H., Ichiyanagi, T., and Ito, T. (2014). Absorption and metabolism of piceatannol in rats. J. Agric. Food. Chem. 62: 2541–2548.

 

Shah, F.A., Kury, L.A., Li, T., Zeb, A., Koh, P.O., Liu, F., Zhou, Q., Hussain, I., Khan, A.U., Jiang, Y., and Li, S. (2019). Polydatin attenuates neuronal loss via reducing neuroinflammation and oxidative stress in rat MCAO models. Front. Pharmacol. 10: 663.

 

Shen, H., and Rong, H. (2015). Pterostilbene impact on retinal endothelial cells under high glucose environment. Int. J. Clin. Exp. Pathol. 8: 12589–12594.

 

Shen, T., Wang, X.N., and Lou, H.X. (2009). Natural stilbenes: an overview. Nat. Prod. Rep. 26: 916–935.

 

Singh, G., and Pai, R.S. (2015). Trans-resveratrol self-nano-emulsifying drug delivery system (SNEDDS) with enhanced bioavailability potential: optimization, pharmacokinetics and in situ single pass intestinal perfusion (SPIP) studies. Drug Deliv 22: 522–530.

 

Singh, G., and Pai, R.S. (2016). In vitro and in vivo performance of supersaturable self-nanoe-mulsifying system of trans-resveratrol, Artif. Cells Nanomed. Biotechnol. 44: 510–516.

 

Soleas, G.J., Angelini, M., Grass, L., Diamandis, E.P., and Goldberg, D.M. (2001). Absorption of trans-resveratrol in rats. Methods. Enzymol. 335: 145–154.

 

Soo, E., Thakur, S., Qu, Z., Jambhrunkar, S., Parekh, H.S., and Popat, A. (2016). Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach. J. Colloid Interface Sci. 462: 368–374.

 

Soufi, F.G., Arbabi-Aval, E., Kanavi, M.R., and Ahmadieh, H. (2015). Anti-inflammatory properties of resveratrol in the retinas of type 2 diabetic rats. Clin. Exp. Pharmacol. Physiol. 42: 63–68.

 

Sun, L.-L., Wang, M., Zhang, H.-J., You, G.-J., Liu, Y.-N., Ren, X.-L., and Deng, Y.-R. (2018). The influence of polysaccharides from Ophiopogon japonicus on 2,3,5,4′-tetrahydroxy-stilbene-2-O-β-D-glucoside about biopharmaceutical properties in vitro and pharmacokinetics in vivo. Int. J. Biol. Macromol. 119: 677–682.

 

Sun, Y., and Zhao, Y. (2012). Enhanced pharmacokinetics and anti-tumor efficacy of PEGylated liposomal rhaponticin and plasma protein binding ability of rhaponticin. J. Nanosci. Nanotechnol. 12: 7677–7684.

 

Tian, B., and Liu, J. (2020). Resveratrol: a review of plant sources, synthesis, stability, modification and food application. J. Sci. Food. Agric. 100: 1392–1404.

 

Torres-Cuevas, I., Millán, I., Asensi, M., Vento, M., Oger, C., Galano, J.M., Durand, T., and Ortega, Á.L. (2021). Analysis of lipid peroxidation by UPLC-MS/MS and retinoprotective effects of the natural polyphenol pterostilbene. Antioxidants 10: 168.

 

Truong, V.-L., Jun, M., and Jeong, W.-S. (2018). Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors 44: 36–49.

 

Tzeng, W.S., Teng, W.L., Huang, P.H., Lin, T.C., Yen, F.L., and Shiue, Y.L. (2021). Pterostilbene Nanoparticles Downregulate Hypoxia-Inducible Factors in Hepatoma Cells Under Hypoxic Conditions. Int. J. Nanomedicine 16: 867–879.

 

Walle, T. (2011). Bioavailability of resveratrol. Ann. N. Y. Acad. Sci. 1215: 9–15.

 

Walle, T., Hsieh, F., DeLegge, M.H., Oatis, J.E. Jr., and Walle, U.K. (2004). High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos. 32: 1377–1382.

 

Wang, F.M., Galson, D.L., Roodman, G.D., and Ouyang, H. (2011). Resveratrol triggers the pro-apoptotic endoplasmic reticulum stress response and represses pro-survival XBP1 signaling in human multiple myeloma cells. Exp. Hematol. 39: 999–1006.

 

Wang, F., Li, R., Zhao, L., Ma, S., and Qin, G. (2020). Resveratrol ameliorates renal damage by inhibiting oxidative stress-mediated apoptosis of podocytes in diabetic nephropathy. Eur. J. Pharmacol. 885: 173387.

 

Wang, G., Song, X., Zhao, L., Li, Z., and Liu, B. (2018). Resveratrol prevents diabetic cardiomyopathy by increasing Nrf2 expression and transcriptional activity. BioMed Res. Int. 2018: 2150218.

 

Wang, H.-L., Gao, J.-P., Han, Y.-L., Xu, X., Wu, R., Fai, Y., and Cui, X.-H. (2015). Comparative studies of polydatin and resveratrol on mutual transformation and antioxidative effect in vivo. Phytomedicine. 22: 553–559.

 

Wang, L., Zhao, H., Wang, L., Tao, Y., Du, G., Guan, W., Liu, J., Brennan, C., Ho, C-T., and Li, S. (2020). Effects of selected resveratrol analogs on activation and polarization of lipopolysaccharid-stimulated BV-2 microglial cells. J. Agric. Food Chem. 68: 3750–3757.

 

Wang, P., and Sang, S. (2018). Metabolism and pharmacokinetics of resveratrol and pterostilbene. BioFactors. 44: 16–25.

 

Wang, X., Meng, L., Zhao, L., Wang, Z., Liu, H., Liu, G., and Guan, G. (2017). Resveratrol ameliorates hyperglycemia-induced renal tubular oxidative stress damage via modulating the SIRT1/FOXO3a pathway. Diabetes Res. Clin. Pract. 126: 172–81.

 

Wen, D., Huang, X., Zhang, M., Zhang, L., Chen, J., Gu, Y., and Hao, C.-M. (2013). Resveratrol attenuates diabetic nephropathy via modulating angiogenesis. PLoS ONE 8: e82336.

 

Wenzel, E., and Somoza, V. (2005). Metabolism and bioavailability of trans-resveratrol. Mol. Nutr. Food Res. 49: 472–481.

 

Wu, H., Li, G.N., Xie, J., Li, R., Chen, Q.H., Chen, J.Z., Wei, Z.H., Kang, L.N., and Xu, B. (2016). Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGF-β/periostin pathway in STZ-induced diabetic mice. BMC Cardiovasc. Disord. 16: 5.

 

Wu, H., Sheng, Z.-Q., Xie, J., Li, R., Chen, L., Li, G.-N., Wang, L., and Xu, B. (2016). Reduced HMGB 1-mediated pathway and oxidative stress in resveratrol-treated diabetic mice: A possible mechanism of cardioprotection of resveratrol in diabetes mellitus. Oxi. Med. Cell. Longev. 2016: 9836860.

 

Wu, J., Li, M., He, J., Lv, K., Wang, M., Guan, W., Liu, J., Tao, Y., Li, S., Ho, C.-T., and Zhao, H. (2019). Protective effect of pterostilbene on concanavalin A-induced acute liver injury. Food Funct. 10: 7308–7314.

 

Wu, Z., Huang, A., Yan, J., Liu, B., Liu, Q., Zhang, J., Zhang, X., Ou, C., and Chen, M. (2017). Resveratrol ameliorates cardiac dysfunction by inhibiting apoptosis via the PI3K/Akt/FoxO3a pathway in a rat model of diabetic cardiomyopathy. J. Cardiovasc. Pharmacol. 70: 184–93.

 

Xian, Y., Gao, Y., Lv, W., Ma, X., Hu, J., Chi, J., Wang, W., and Wang, Y. (2020). Resveratrol prevents diabetic nephropathy by reducing chronic inflammation and improving the blood glucose memory effect in non-obese diabetic mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 393: 2009–17.

 

Xie, X., Peng, J., Huang, K., Huang, J., Shen, X., Liu, P., and Huang, H. (2012). Polydatin ameliorates experimental diabetes-induced fibronectin through inhibiting the activation of NF-κB signaling pathway in rat glomerular mesangial cells. Mol. Cell. Endocrinol. 362: 183–193.

 

Yamamoto, T., Li, Y., Hanafusa, Y., Yeh, Y.-S., Maruki-Uchida, H., Kawakami, S., Sai, M., Goto, T., Ito, T., and Kawada, T. (2017). Piceatannol exhibits anti-inflammatory effects on macrophages interacting with adipocytes. Food Sci. Nutr. 5: 76–85.

 

Yang, C., Wang, Y., Xie, Y., Liu, G., Lu, Y., Wu, W., and Chen, L. (2019). Oat protein-shellac nanoparticles as a delivery vehicle for resveratrol to improve bioavailability in vitro and in vivo. Nanomedicine (Lond.). 14: 2853–2871.

 

Yang, G., Zhan, J., Yang, Y., Yuan, L., Wang, P., Ho, C.-T., and Li, S. (2021). Inhibitory effects of oxyresveratrol on ERK and Smad1/2phosphorylation and HSC activation in preventing carbontetrachloride-induced rat liver fibrosis. Food Sci. Hum. Well. 10: 6–12.

 

Yang, J., Wang, Y., Cai, X., Qu, B., Zhang, Y., Sun, Z., and Yan, J. (2024). Comparative pharmacokinetics and tissue distribution of polydatin, resveratrol, and emodin after oral administration of Huzhang and Huzhang-Guizhi herb-pair extracts to rats. J. Ethnopharmacol. 318: 117010.

 

Yang, X., Dai, L., Yan, F., Ma, Y., Guo, X., Jenis, J., Wang, Y., Zhang, J., Miao, X., and Shang, X. (2024). The phytochemistry and pharmacology of three Rheum species: A comprehensive review with future perspectives. Phytomedicine. 131: 155772.

 

Yang, Y., Zhang, G., Li, C., Wang, S., Zhu, M., Wang, J., Yue, H., Ma, X., Zhen, Y., and Shu, X. (2019). Metabolic profile and structure-activity relationship of resveratrol and its analogs in human bladder cancer cells. Cancer Manag. Res. 11: 4631–4642.

 

Yeo, S.C., Ho, P.C., and Lin, H.S. (2013). Pharmacokinetics of pterostilbene in Sprague-Dawley rats: the impacts of aqueous solubility, fasting, dose escalation, and dosing route on bioavailability. Mol. Nutr. Food Res. 57: 1015–1025.

 

Zeng, K., Wang, Y., Yang, N., Wang, D., Li, S., Ming, J., Wang, J., Yu, X., Song, Y., Zhou, X., Deng, B., Wu, X., Huang, L., and Yang, Y. (2017). Resveratrol inhibits diabetic-induced Müller cells apoptosis through microRNA-29b/specificity protein 1 pathway. Mol. Neurobiol. 54: 4000–14.

 

Zeng, K., Yang, N., Wang, D., Li, S., Ming, J., Wang, J., Yu, X., Song, Y., Zhou, X., and Yang, Y. (2016). Resveratrol prevents retinal dysfunction by regulating glutamate transporters, glutamine synthetase expression and activity in diabetic retina. Neurochem. Res. 41: 1050–1064.

 

Zhan, J., Yang, G., Hu, T., Shen, J., Ho, C.-T., and Li, S. (2021). Pterostilbene is more efficacious than hydroxystilbenes in protecting liver fibrogenesis in a carbon tetracholride-induced rat model. J. Funct. Foods. 84: 104604.

 

Zhang, J., Dong, X.-J., Ding, M.-R., You, C.-Y., Lin, X., Wang, Y., Wu, M.-J.-Y., Xu, G.-F., and Wang, G.-D. (2020). Resveratrol decreases high glucose-induced apoptosis in renal tubular cells via suppressing endoplasmic reticulum stress.Mol. Med. Rep. 22: 4367–75.

 

Zhang, K., Chen, J., Raza, F., Zafar, H., Xu, Y., Lui, R., Ullah, K.H., and Zhou, S. (2024). Advancing diabetes treatment: novel formulation of polydatin long-circulating liposomes and their glucose-regulating impact on hyperlipidemia-induced type 2 diabetic mice. Mater. Adv. 5: 6516–6534.

 

Zhang, W., Yu, H., Lin, Q., Liu, X., Cheng, Y., and Deng, B. (2021). Anti-inflammatory effect of resveratrol attenuates the severity of diabetic neuropathy by activating the Nrf2 pathway. Aging (Albany NY) 13: 10659–10671.

 

Zhang, Y., Ren, S., Ji, Y., and Liang, Y. (2019). Pterostilbene ameliorates nephropathy injury in streptozotocin-induced diabetic rats. Pharmacology 104: 71–80.

 

Zhao, Y.Y., Cheng, X.L., Wei, F., Han, X.Q., and Lin, R.C. (2013). Pharmacokinetics, bioavailability, and metabolism of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside in rats by ultra-performance liquid chromatography–quadrupole Time-of-Flight mass spectrometry and high-performance liquid chromatography-ultraviolet. J. Liq. Chromatogr. 36: 717–730.

 

Zhao, Y.Y., Zhang, L., Feng, Y.L., Chen, D.Q., Xi, Z.H., Du, X., Bai, X., and Lin, R.C. (2013). Pharmacokinetics of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside in rat using ultra-performance LC-quadrupole TOF-MS. J. Sep. Sci. 36: 863–871.

 

Zou, Y., Wang, X., Bi, D., Fu, J., Han, J., Guo, Y., Feng, L., and Han, M. (2021). Pterostilbene nanoparticles with small particle size show excellent anti-breast cancer activity in vitro and in vivo. Nanotechnology 32: 325102.

 

Zhang, Y., Shang, Z., Gao, C., Du, M., Xu, S., Song, H., and Liu, T. (2014). Nanoemulsion for solubilization, stabilization, and in vitro release of pterostilbene for oral delivery. AAPS PharmSciTech. 15: 1000–1008.

 

Zhao, Y.-Y., Su, Q., Cheng, X.-L., Tan, X.-J., Bai, X., and Lin, R.-C. (2012). Pharmacokinetics, bioavailability and metabolism of rhaponticin in rat plasma by UHPLC-Q-TOF/MS and UHPLC-DAD-MSn. Bioanalysis 4: 713–723.

 

Zu, Y., Zhang, Y., Wang, W., Zhao, X., Han, X., Wang, K., and Ge, Y. (2014). Preparation and in vitro/in vivo evaluation of resveratrol-loaded carboxymethyl chitosan nano-particles. Drug Deliv. 2014: 1–11.

 

Zupančič, Š., Lavrič, Z., and Kristl, J. (2015). Stability and solubility of trans-resveratrol are strongly influenced by pH and temperature. Eur. J. Pharm. Biopharm. 93: 196–204.

Journal of Food Bioactives
Pages 6-18
Cite this article:
Peng J, Zhang W, Zhu Y, et al. Pharmacokinetic profiles and improvement of resveratrol and derived stilbenes. Journal of Food Bioactives, 2025, 30: 6-18. https://doi.org/10.26599/JFB.2025.95030409

33

Views

0

Downloads

0

Crossref

Altmetrics

Received: 29 May 2025
Revised: 18 June 2025
Accepted: 18 June 2025
Published: 15 July 2025
© The author(s) 2025. Publishing Services by Tsinghua University Press

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

Return