Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Lignans in Patrinia have attracted the attention of researchers due to their diverse structure and remarkable activity. We searched the PubMed database for articles published from 2003 to 2023 using appropriate search terms: Patrinia, Lignans, Biological activity, and Chemical structures. In this paper, the active lignans and their action mechanisms were summarized over the past 20 years. The results showed that 56 lignans have been isolated and identified from Patrinia, including furofurans, dibenzyltyrolactones, tetrahydrofurans, arylnaphthalenes, benzofurans and biphenyl derivatives. 45 lignans had anti-oxidant, anti-inflammatory, anti-tumor, cytotoxicity, enzyme inhibitor, anti-Alzheimer’s disease, neuroprotection, anti-bacterial, hepatoprotection and anti-diabetic activities. The anti-inflammatory mechanism involves AMPK, MAPK, NF-κB and JAK-STAT signaling pathways, and the antitumor mechanism involves Raf/MEK/ERK, Akt/JNK and AKT signaling pathways. Lignans in Patrinia are promising to be utilized in food and medicine.
Adnan, M., Rasul, A., Hussain, G., Shah, M.A., Zahoor, M.K., Anwar, H., Sarfraz, I., Riaz, A., Manzoor, M., Adem, Ş., and Selamoglu, Z. (2020). Ginkgetin: A natural biflavone with versatile pharmacological activities. Food Chem. Toxicol. 145: 111642.
Al-Sayed, E., Ke, T.-Y., Hwang, T.-L., Chen, S.-R., Korinek, M., Chen, S.-L., and Cheng, Y.-B. (2020). Cytotoxic and anti-inflammatory effects of lignans and diterpenes from Cupressus macrocarpa. Bioorganic Med. Chem. Lett 30(10): 127127.
Badr, G., Sayed, E.A., Waly, H., Hassan, K.A.-H., Mahmoud, M.H., and Selamoglu, Z. (2019). The Therapeutic Mechanisms of Propolis Against CCl4-Mediated Liver Injury by Mediating Apoptosis of Activated Hepatic Stellate Cells and Improving the Hepatic Architecture through PI3K/AKT/mTOR, TGF-beta/Smad2, Bcl2/BAX/P53 and iNOS Signaling Pathways. Cell. Physiol. Biochem. 53(2): 301–322.
Bai, M., Li, S.-F., Liu, S.-F., Wang, X.-B., Huang, X.-X., and Song, S.-J. (2018). Iridoid glycoside and lignans from a wild vegetable (Patrinia villosa Juss.) with antioxidant activity. J. Food Biochem. 42(3): e12521.
Bai, M., Yao, G.-D., Liu, S.-F., Wang, D., Liu, Q.-B., Huang, X.-X., and Song, S.-J. (2017). Lignans from a wild vegetable (Patrinina villosa) able to combat Alzheimer’s disease. J. Funct. Foods 28: 106–113.
Bajpai, V.K., Alam, M.B., Khong Trong, Q., Kwon, K.-R., Ju, M.-K., Choi, H.-J., Lee, J.S., Yoon, J.-I., Majumder, R., Rather, I.A., Kim, K., Lee, S.-H., and Na, M. (2017). Antioxidant efficacy and the upregulation of Nrf2-mediated HO-1 expression by (+)-lariciresinol, a lignan isolated from Rubia philippinensis, through the activation of p38. Sci. Rep. 7: 46035.
Bajpai, V.K., Shukla, S., Paek, W.K., Lim, J., Kumar, P., Kumar, P., and Na, M. (2017). Efficacy of (+)-Lariciresinol to Control Bacterial Growth of Staphylococcus aureus and Escherichia coli O157:H7. Front. Microbiol. 8: 804.
Chang, F.-P., Huang, S.-S., Lee, T.-H., Chang, C.-I., Kuo, T.-F., Huang, G.-J., and Kuo, Y.-H. (2019). Four New Iridoid Metabolites Have Been Isolated from the Stems of Neonauclea reticulata (Havil.) Merr. with Anti-Inflammatory Activities on LPS-Induced RAW264.7 Cells. Molecules 24(23): 4271.
Cheng, F., Zou, Z.X., Xu, P.S., Zhang, S.H., Zhang, Y., Yao, C.P., Xu, K.P., and Tan, G.S. (2020). Pictalignans D-F, three new neolignan derivatives from Selaginella picta. Nat. Prod. Res. 34(9): 1264–1269.
Cho, J.Y., Kim, A.R., and Park, M.H. (2001). Lignans from the rhizomes of Coptis japonica differentially act as anti-inflammatory principles. Planta Med. 67(4): 312–316.
Choi, Y.-W., Takamatsu, S., Khan, S.I., Srinivas, P.V., Ferreira, D., Zhao, J., and Khan, I.A. (2006). Schisandrene, a Dibenzocyclooctadiene Lignan from Schisandra chinensis: Structure−Antioxidant Activity Relationships of Dibenzocyclooctadiene Lignans. J. Nat. Prod. 69(3): 356–359.
Deveci, E., Tel-Cayan, G., Duru, M.E., and Ozturk, M. (2019). Chemical constituents of Porodaedalea pini mushroom with cytotoxic, antioxidant and anticholinesterase activities. J. Food Meas. Charact. 13(4): 2686–2695.
Di, L., Yan, G.Q., Wang, L.Y., Ma, W., Wang, K.J., and Li, N. (2013). Two new neolignans from Patrinia scabra with potent cytotoxic activity against HeLa and MNK-45 cells. Arch. Pharm. Res. 36(10): 1198–1203.
Dinh Thi Huyen, T., Pham Hung, V., Duong Hong, A., Bui Huu, T., Ngo Quoc, A., Nguyen Xuan, N., and Phan Van, K. (2022). Lignans and Other Compounds From the Roots of Pandanus tonkinensis and Their Lipid Peroxidation Inhibitory Activity. Nat. Prod. Commun. 17(4): 1–5.
Fan, Y., Wang, W., Wang, X.F., Yu, L.Q., Wei, Y., Wei, L., Xie, X.Y., and Li, X. (2023). Ganoderma lucidum polysaccharide inhibits LPS-induced inflammatory injury to mammary epithelial cells. J. Future Foods 3(1): 49–54.
Gu, Z., Chen, X., Yang, G., Li, T., Liu, W., and Zhang, W. (2002). Studies on immunocompetent constituents of Patrinia scabra Bunge. J. Chin. Med. Mater. 25(3): 178–180.
Gülsüm, A., and Zeliha, S. (2019). Nutrition and Foods for Skin Health. J. Pharm. Care 7: 31–33.
Hashim, Y., Toume, K., Mizukami, S., Ge, Y.-W., Taniguchi, M., Teklemichael, A.A., Nguyen Tien, H., Bodi, J.M., Hirayama, K., and Komatsu, K. (2021). Phenylpropanoid conjugated iridoids with anti-malarial activity from the leaves of Morinda morindoides. J. Nat. Med. 75(4): 915–925.
He, W.J., Yang, C.Y., Wang, M.K., and Li, F. (2014). A novel phenolic acid from the fruits of Rosa soulieana. Nat. Prod. Res. 28(15): 1127–1133.
Hong, S.S., Jeong, W., Kim, J.K., Kwon, J.G., Lee, J.Y., Ahn, E.K., Oh, J., Seo, D.W., and Oh, J.S. (2014). Neolignan inhibitors of antigen-induced degranulation in RBL-2H3 cells from the needles of Pinus thunbergii. Fitoterapia 99: 347–351.
Hou, Y.-Z., Chen, K.-K., Deng, X.-L., Fu, Z.-L., Chen, D.-F., and Wang, Q. (2017). Anti-complementary constituents of Anchusa italica. Nat. Prod. Res. 31(21): 2572–2574.
Huang, L.Y., Sun, Y.Z., Chen, Q.Q., Du, T.T., Xu, H.T., and Chou, G.X. (2021). Study on the chemical components of Patrinia villosa. Chin. Herb. Med. 52(23): 7088–7095.
Hwang, B., Cho, J., Hwang, I.-s., Jin, H.-G., Woo, E.-R., and Lee, D.G. (2011). Antifungal activity of lariciresinol derived from Sambucus williamsii and their membrane-active mechanisms in Candida albicans. Biochem. Biophys. Res. Commun. 410(3): 489–493.
Jiang, J., Yu, X., Fang, Y., Zhang, Y., Li, N., and Wang, K. (2017). Chemical Constituents of the Roots of Patrinia scabiosaefolia and the Cytotoxicity of Patrineolignans A and B. Chem. Nat. Compd. 53(1): 143–146.
Jiang, L.-L., Sun, B.-R., Zheng, C., and Yang, G.-L. (2017). The antitumour effects of eudesmin on lung cancer by inducing apoptosis via mitochondria-mediated pathway in the tumour cells. Pharm. Biol. 55(1): 2259–2263.
Jiang, X., Chen, W., Shen, F., Xiao, W., Guo, H., Su, H., Xiu, J., and Sun, W. (2019). Pinoresinol promotes MC3T3-E1 cell proliferation and differentiation via the cyclic AMP/protein kinase A signaling pathway. Mol. Med. Rep. 20(3): 2143–2150.
Kim, M.J., Wang, H.S., and Lee, M.W. (2020). Anti-Inflammatory Effects of Fermented Bark of Acanthopanax sessiliflorus and Its Isolated Compounds on Lipopolysaccharide-Treated RAW 264.7 Macrophage Cells. Evidence-Based Complementary Altern. Med. 2020: 6749425.
Kim, S.Y., Lee, J.Y., Jhin, C., Shin, J.M., Kim, M., Ahn, H.R., Yoo, G., Son, Y.-J., Jung, S.H., and Nho, C.W. (2019). Reduction of Hepatic Lipogenesis by Loliolide and Pinoresinol from Lysimachia vulgaris via Degrading Liver X Receptors. J. Agric. Food Chem. 67(45): 12419–12427.
Koga, K., Taguchi, A., Koshimizu, S., Suwa, Y., Yamada, Y., Shirasaka, N., and Yoshizumi, H. (2007). Reactive oxygen scavenging activity of matured whiskey and its active polyphenols. J. Food Sci. 72(3): S212–S217.
Lee, D.H., Shin, J.-S., Kang, S.-Y., Lee, S.-B., Lee, J.S., Ryu, S.M., Lee, K.T., Lee, D., and Jang, D.S. (2018). Iridoids from the Roots of Patrinia scabra and Their Inhibitory Potential on LPS-Induced Nitric Oxide Production. J. Nat. Prod. 81(6): 1468–1473.
Lee, H.-H., Jang, E., Kang, S.-Y., Shin, J.-S., Han, H.-S., Kim, T.-W., Lee, D.H., Lee, J.-H., Jang, D.S., and Lee, K.-T. (2020). Anti-inflammatory potential of Patrineolignan B isolated from Patrinia scabra in LPS-stimulated macrophages via inhibition of NF-κB, AP-1, and JAK/STAT pathways. Int. Immunopharmacol. 86: 106726.
Lee, H., Ji, Y.R., Ryoo, Z.Y., Choi, M.-S., Woo, E.-R., and Lee, D.G. (2016). Antibacterial Mechanism of (-)-Nortrachelogenin in Escherichia coli O157. Curr. Microbiol. 72(1): 48–54.
Lee, H., Woo, E.R., and Lee, D.G. (2016). (-)-Nortrachelogenin from Partrinia scabiosaefolia elicits an apoptotic response in Candida albicans. FEMS Yeast Res. 16(3): fow013.
Lee, J., Seo, E.K., Jang, D.S., Ha, T.J., Kim, J.P., Nam, J.W., Bae, G., Lee, Y.M., Yang, M.S., and Kim, J.S. (2009). Two New Stereoisomers of Neolignan and Lignan from the Flower Buds of Magnolia fargesii. Chem. Pharm. Bull. 57(3): 298–301.
Lee, S., Moon, E., Choi, S.U., and Kim, K.H. (2016). Lignans from the Twigs of Euonymusalatus (Thunb.) Siebold and Their Biological Evaluation. Chem. Biodiversity 13(10): 1391–1396.
Lee, W., Song, G., and Bae, H. (2022). Matairesinol Induces Mitochondrial Dysfunction and Exerts Synergistic Anticancer Effects with 5-Fluorouracil in Pancreatic Cancer Cells. Mar. Drugs 20(8): 473.
Li, J., Zhou, B.X., Li, C.F., Chen, Q., Wang, Y.T., Li, Z.T., Chen, T.T., Yang, C.G., Jiang, Z.H., Zhong, N.S., Yang, Z.F., and Chen, R.C. (2015). Lariciresinol-4-O-β-D-glucopyranoside from the root of Isatis indigotica inhibits influenza A virus-induced pro-inflammatory response. J. Ethnopharmacol. 174: 379–386.
Li, S.-L., Wu, H.-C., Hwang, T.-L., Lin, C.-H., Yang, S.-S., and Chang, H.-S. (2020). Phytochemical Investigation and Anti-Inflammatory Activity of the Leaves of Machilus japonica var. kusanoi. Molecules 25(18): 4149.
Li, T.Z., D, Z.W., Gu, Z.B., Liu, W.Y., Zhang, C., and Liu, R.H. (2005). Study on lignans in P. scabra. Chin. Herb. Med. (03): 338–340.
Li, T.Z., Zhang, W.D., Gu, Z.B., Liu, W., Zhou, J., and Chen, W. (2003). Study on lignan components in Patrinia scabra. Acta Pharmacol. Sin. (07): 520–522.
Liu, L., Zou, M., Yin, Q., Zhang, Z., and Zhang, X. (2021). Phenylpropanoids from Liparis nervosa and their in vitro antioxidant and α-glucosidase inhibitory activities. Med. Chem. Res. 30(4): 1005–1010.
Liu, W.Y., Wei, M.L., Wu, C.Y., Zhu, H.Y., Feng, F., and Xie, N. (2015). Fingerprint of Ethyl Acetate Extraction Combined with Qualitative and Quantitative Analysis on Patrinia scabra Bunge: Distinguish P. scabra Bunge from Its Confusable Species. Acta Chromatographica 27(1): 177–187.
Liu, Y., Wang, A.F., Naseem, A., Ye, H.L., Jiang, P., Li, X.M., Wang, S.Y., Pan, J., Guan, W., Lan, W., and Yang, B.Y. (2022). Phenylpropanoids and triterpenoids from Tripterygium regelii and their anti-inflammatory activities. Phytochem. Lett. 49: 73–78.
Liu, X.Q., Wang, S.Y., Cui, L.L., Zhou, H.H., Liu, Y.H., Meng, L.J., Chen, S.T., Xi, X.F., Zhang, Y., and Kang, W.Y. (2023). Flowers: precious food and medicine resources. Food Sci. Hum. Wellness 12(4): 1020–1052.
Liu, Z.H., Wang, M.K., Meng, L.J., Chen, Y.X., Wang, Q.Y., Zhang, Y., Xi, X.F., and Kang, W.Y. (2023a). Lignans from Patrinia scabiosaefolia improve insulin resistance by activating PI-3K/AKT pathway and promoting GLUT4 expression. Food Sci. Hum. Wellness 12(6): 2014–2021.
Lunder, M., Roskar, I., Hosek, J., and Strukelj, B. (2019). Silver Fir (Abies alba) Extracts Inhibit Enzymes Involved in Blood Glucose Management and Protect against Oxidative Stress in High Glucose Environment. Plant Foods Hum. Nutr. 74(1): 47–53.
Ma, Y., Bao, Y., Zhang, W., Ying, X., and Stien, D. (2020). Four lignans from Portulaca oleracea L. and its antioxidant activities. Nat. Prod. Res. 34(16): 2276–2282.
Ma, Y., Zhang, D.H., and Jiang, M.Y. (2020). Chemical Constituents of Eleutherococcus sessiliflorus (Rupr. & Maxim.). Nat. Prod. Commun. 15(2): 1–4.
Ma, Z.-J., Lu, L., Yang, J.-J., Wang, X.-X., Su, G., Wang, Z.-L., Chen, G.-H., Sun, H.-M., Wang, M.-Y., and Yang, Y. (2018). Lariciresinol induces apoptosis in HepG2 cells via mitochondrial-mediated apoptosis pathway. Eur. J. Pharmacol. 821: 1–10.
Mahajan, M., Suryavanshi, S., Bhowmick, S., Alasmary, F.A., Almutairi, T.M., Islam, M.A., and Kaul-Ghanekar, R. (2021). Matairesinol, an active constituent of HC9 polyherbal formulation, exhibits HDAC8 inhibitory and anticancer activity. Biophys. Chem. 273: 106588.
Michalak, B., Filipek, A., Chomicki, P., Pyza, M., Wozniak, M., ZyzynskaGranica, B., Piwowarski, J.P., Kicel, A., Olszewska, M.A., and Kiss, A.K. (2018). Lignans From Forsythia x Intermedia Leaves and Flowers Attenuate the Pro-inflammatory Function of Leukocytes and Their Interaction With Endothelial Cells. Front. Pharmacol. 9: 401.
Min, L.S., Na, M.K., Oh, S.R., Ahn, K.S., Jeong, G.S., Li, G., Lee, S.K., Joung, H., and Lee, H.K. (2004). New furofuran and butyrolactone lignans with antioxidant activity from the stem bark of Styrax japonica. J. Nat. Prod. 67(12): 1980–1984.
Moo-Puc, J.A., Martín-Quintal, Z., Mirón-López, G., Moo-Puc, R.E., Quijano, L., and Mena-Rejón, G.J. (2014). Isolation and antitrichomonal activity of the chemical constituents of the leaves of Maytenus phyllanthoides Benth. (Celastraceae). Quim. Nova 37(1): 85–U114.
Nakano, H., Fujii, Y., Yamada, K., Kosemura, S., Yamamura, S., Hasegawa, K., and Suzuki, T. (2002). Isolation and identification of plant growth inhibitors as candidate(s) for allelopathic substance(s), from aqueous leachate from mesquite (Prosopis juliflora (Sw.) DC.) leaves. Plant Growth Regul. 37(2): 113–117.
Nam, K.H., Yi, S.A., Lee, J., Lee, M.G., Park, J.H., Oh, H., Lee, J., Park, J.W., and Han, J.-W. (2018). Eudesmin impairs adipogenic differentiation via inhibition of S6K1 signaling pathway. Biochem. Biophys. Res. Commun. 505(4): 1148–1153.
Ning, Y., Fu, Y.L., Zhang, Q.H., Zhang, C., and Chen, Y. (2019). Inhibition of in vitro and in vivo ovarian cancer cell growth by pinoresinol occurs by way of inducing autophagy, inhibition of cell invasion, loss of mitochondrial membrane potential and inhibition Ras/MEK/ERK signalling pathway. J. Buon. 24(2): 709–714.
Ohtsuki, K., Miyai, S., Yamaguchi, A., Morikawa, K., and Okano, T. (2012). Biochemical Characterization of Novel Lignans Isolated from the Wood of Taxus yunnanensis as Effective Stimulators for Glycogen Synthase Kinase-3β and the Phosphorylation of Basic Brain Proteins by the Kinase in Vitro. Biol. Pharm. Bull. 35(3): 385–393.
Park, R., Park, E.J., Cho, Y.-Y., Lee, J.Y., Kang, H.C., Song, I.-S., and Lee, H.S. (2021). Tetrahydrofurofuranoid Lignans, Eudesmin, Fargesin, Epimagnolin A, Magnolin, and Yangambin Inhibit UDP-Glucuronosyltransferase 1A1 and 1A3 Activities in Human Liver Microsomes. Pharmaceutics 13(2): 187.
Pemmari, A., Leppanen, T., Paukkeri, E.-L., Scotece, M., Hamalainen, M., and Moilanen, E. (2018). Attenuating Effects of Nortrachelogenin on IL-4 and IL-13 Induced Alternative Macrophage Activation and on Bleomycin-Induced Dermal Fibrosis. J. Agric. Food Chem. 66(51): 13405–13413.
Salleh, W.M.N.H.W., Hashim, N.A., and Khamis, S. (2019). Chemical constituents and lipoxygenase inhibitory activity of Piper stylosum Miq. Bull. Chem. Soc. Ethiop. 33(3): 587–592.
Selamoglu, Z., Dusgun, C., Akgul, H., and Gulhan, M.F. (2017). In-vitro Antioxidant Activities of the Ethanolic Extracts of Some Contained-Allantoin Plants. Iran. J. Pharm. Res. 16: 92–98.
Selamoglu, Z.S., Ozdemir, I., Ciftci, O., Gulhan, M.F., and Savci, A. (2015). Antioxidant Effect of Ethanolic Extract of Propolis in Liver of L-NAME Treated Rats. Adv. Clin. Exp. Med. 24(2): 227–232.
Song, C.-W., Wang, S.-M., Zhou, L.-L., Hou, F.-F., Wang, K.-J., Han, Q.-B., Li, N., and Cheng, Y.-X. (2011). Isolation and Identification of Compounds Responsible for Antioxidant Capacity of Euryale ferox Seeds. J. Agric. Food Chem. 59(4): 1199–1204.
Tebboub, O., Cotugno, R., Oke-Altuntas, F., Bouheroum, M., Demirtas, I., D’Ambola, M., Malafronte, N., and Vassallo, A. (2018). Antioxidant Potential of Herbal Preparations and Components from Galactites elegans (All.) Nyman ex Soldano. Evidence-Based Complementary Altern. Med. 2018: 9294358.
Timalsina, D., Bhusal, D., Devkota, H.P., Pokhrel, K.P., and Sharma, K.R. (2021). α-Amylase Inhibitory Activity of Catunaregam spinosa (Thunb.) Tirveng.: In Vitro and In Silico Studies. BioMed Res. Int. 2021: 4133876.
Tran Thu, H., Le Huyen, T., Nguyen Van, T., Nguyen Hoang, M., Tran Thi, M., Tran Thuong, Q., Tran Thu, H., Nguyen Duc, H., Dao Van, D., Thi Minh Nguyet, N., and Park, J.-T. (2022). Furofuran lignans from Valeriana jatamansi with their antioxidant and anticancer properties. Vietnam J. Chem. 60(2): 157–163.
Wang, H., Li, M.-C., Yang, J., Yang, D., Su, Y.-F., Fan, G.-W., Zhu, Y., Gao, X.- M., and Paoletti, R. (2011). Estrogenic properties of six compounds derived from Eucommia ulmoides Oliv. and their differing biological activity through estrogen receptors α and β. Food Chem. 129(2): 408–416.
Wang, L.J., and Li, Y.J. (2004). Research on the materia medica of patrinia. Chin. Herb. Med. (06): 101–102.
Wang, L.Y., Chen, M.H., Wu, J., Sun, H., Liu, W., Qu, Y.H., Li, Y.C., Wu, Y.Z., Li, R., Zhang, D., Wang, S.J., and Lin, S. (2017). Bioactive Glycosides from the Twigs of Litsea cubeba. J. Nat. Prod. 80(6): 1808–1818.
Wang, W., Jiao, L., Tao, Y., Shao, Y., Wang, Q., Yu, R., Mei, L., and Dang, J. (2019). On-line HPLC-DPPH bioactivity-guided assay for isolated of antioxidative phenylpropanoids from Qinghai-Tibet Plateau medicinal plant Lancea tibetica. J. Chromatogr. B-Analyt. Technol. Biomed. Life Sci. 1106: 1–10.
Wikul, A., Damsud, T., Kataoka, K., and Phuwapraisirisan, P. (2012). (+)-Pinoresinol is a putative hypoglycemic agent in defatted sesame (Sesamum indicum) seeds though inhibiting α-glucosidase. Bioorganic Med. Chem. Lett 22(16): 5215–5217.
Wu, B., Zhang, X.D., and Wu, X.D. (2012). New lignan glucosides with tyrosinase inhibitory activities from exocarp of Castanea henryi. Carbohydr. Res. 355: 45–49.
Wu, Q., Wang, Y., and Li, Q. (2021). Matairesinol exerts anti-inflammatory and antioxidant effects in sepsis-mediated brain injury by repressing the MAPK and NF-kB pathways through up-regulating AMPK. Aging (Albany NY) 13(20): 23780–23795.
Xiang, Z., Zhao, S.S., Zhao, Y., Li, N., Wu, J., Chen, C.L., and Liu, H.W. (2017). Chemical Constituents from Patrinia villosa (Thunb.) Juss. Lat. Am. J. Pharm. 36(12): 2425–2430.
Xiao, M.Z., Zhu, S.N., and Zhang, A.H. (2007). Advances in research on the medicinal and edible use of Patrinia. Journal of Jinling Institute of Science and Technology (03): 83-86+104.
Yan, X.-J., Liu, W., Zhao, Y., Chen, N., Xu, Y., Wu, J., Wang, T., Li, Y., and Xiang, Z. (2016). A New Biphenyl Neolignan from Leaves of Patrinia villosa (Thunb.) Juss. Pharmacogn. Mag. 12(45): 1–3.
Yang, C.-P., Huang, G.-J., Huang, H.-C., Chen, Y.-C., Chang, C.-I., Wang, S.- Y., Chang, H.-S., Tseng, Y.-H., Chien, S.-C., and Kuo, Y.-H. (2013). The Effect of the Aerial Part of Lindera akoensis on Lipopolysaccharides (LPS)-Induced Nitric Oxide Production in RAW264.7 Cells. Int. J. Mol. Sci. 14(5): 9168–9181.
Yang, J.S., Wang, C.M., Su, C.H., Ho, H.C., Chang, C.H., Chou, C.H., and Hsu, Y.M. (2018). Eudesmin attenuates Helicobacter pylori-induced epithelial autophagy and apoptosis and leads to eradication of H. pylori infection. Exp. Ther. Med. 15(3): 2388–2396.
Yang, L., Liu, R., Fang, Y., and He, J. (2021). Anti-inflammatory effect of phenylpropanoids from Dendropanax dentiger in TNF-α-induced MH7A cells via inhibition of NF-κB, Akt and JNK signaling pathways. Int. Immunopharmacol. 94: 107463.
Yang, L., and Wang, C. (2022). Lignan matairesinol illustrates an antidiabetic effect via inhibition of DPP-4 and hepato-protective effect via inhibition of apoptosis in diabetic rats. Acta Pol. Pharm. 79(3): 393–400.
Yi, J.-M., Shin, S., Kim, N.S., and Bang, O.-S. (2019). Neuroprotective Effects of an Aqueous Extract of Forsythia viridissima and Its Major Constituents on Oxaliplatin-Induced Peripheral Neuropathy. Molecules 24(6): 1177.
Youssef, F.S., Ashour, M.L., El-Beshbishy, H.A., Hamza, A.A., Singab, A.N.B., and Wink, M. (2020). Pinoresinol-4-O-β-D-glucopyranoside: a lignan from prunes (Prunus domestica) attenuates oxidative stress, hyperglycaemia and hepatic toxicity in vitro and in vivo. J. Pharm. Pharmacol. 72(12): 1830–1839.
Yu, J., Kwon, H., Cho, E., Jeon, J., Kang, R.H., Youn, K., Jun, M., Lee, Y.C., Ryu, J.H., and Kim, D.H. (2019). The effects of pinoresinol on cholinergic dysfunction-induced memory impairments and synaptic plasticity in mice. Food Chem. Toxicol. 125: 376–382.
Yu, M., Li, Y., Li, M., and Lu, D. (2019). Eudesmin exerts antitumor effects by down-regulating EZH2 expression in nasopharyngeal carcinoma cells. Chem.-Biol. Interact. 307: 51–57.
Zalesak, F., Bon, D.J.-Y.D., and Pospisil, J. (2019). Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances [Review]. Pharmacol. Res. 146: 104284.
Zeliha, S. (2018). Aloe Vera: A Miracle Plant with its Wide-Ranging Applications. Pharm. Pharmacol. Int. J. 6(1): 00144.
Zeng, D.Y., Xiong, Y., Yin, Y.S., Shan, S., Duan, F.Y., Gao, X., Song, C., Liu, M.Y., Zhang, Y.C., and Lu, W.H. (2022). Identification of targets and mechanisms for Eleutheroside E in the treatment of cancer. Journal of Future Foods 2(1): 69–81.
Zhang, X., Rui, M.J., Xu, H.T., and Chou, G.X. (2020). Lignans, Monoterpenes and γ-Pyrone Derivatives from Patrinia scabiosifolia with Cytotoxic Activity against HCT-116 Cells. Chem. Biodivers. 17(10): e2000397.
Zhou, H.X., Huang, R.G., Su, T.C., Li, B., Zhou, H.Y., Ren, J.L., and Li, Z.H. (2022). A c-MWCNTs/AuNPs-based electrochemical cytosensor to evaluate the anticancer activity of pinoresinol from Cinnamomum camphora against HeLa cells. Bioelectrochemistry 146: 108133.
Zou, H., Ben, T.T., Wu, P., Waterhouse, G.I.N., and Chen, Y.L. (2023). Effective anti-inflammatory phenolic compounds from dandelion: identification and mechanistic insights using UHPLC-ESI-MS/MS, fluorescence quenching and anisotropy, molecular docking and dynamics simulation. Food Sci. Hum. Wellness 12(6): 2184–2194.
Zou, Y.Y., Wang, D.W., Yan, Y.M., and Cheng, Y.X. (2021). Lignans from Lepidium meyenii and Their Anti-Inflammatory Activities. Chem. Biodivers. 18(8): e2100231.