Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The temperature coefficient of the resonant frequency (τf) of low-permittivity (εr) microwave dielectric ceramics is required to be near 0 ppm/°C for practical application. However, owing to the polarization mechanism, τf of low-εr microwave dielectric ceramics is generally negative. Here, a novel microwave dielectric ceramic, Ba3−xSrxMgSi2O8, with an abnormal positive τf at the applied temperature is presented. In this study, Sr2+ with a relatively small ionic radius was introduced to replace Ba2+, and a single-phase solid solution was formed (x > 0.5). Ba3−xSrxMgSi2O8 ceramics were discussed in glaserite-type topology with space groups of P
Reaney IM, Iddles D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J Am Ceram Soc 2006, 89: 2063–2072.
Kamutzki F, Schneider S, Barowski J, et al. Silicate dielectric ceramics for millimetre wave applications. J Eur Ceram Soc 2021, 41: 3879–3894.
He GQ, Jiang Y, Song KX, et al. Ultrahigh- Q Sr1+ x Y2O4+ x ( x = 0.01–0.04) microwave dielectric ceramics for temperature-stable millimeter-wave dielectric resonator antennas. J Adv Ceram 2024, 13: 155–165.
Hu X, Huang XJ, Chen YH, et al. Phase evolution and microwave dielectric properties of SrTiO3 added ZnAl2O4–Zn2SiO4–SiO2 ceramics. Ceram Int 2020, 46: 7050–7054.
Yokoi A, Ogawa H, Kan A, et al. Microwave dielectric properties of Mg4Nb2O9–3.0wt% LiF ceramics prepared with CaTiO3 additions. J Eur Ceram Soc 2005, 25: 2871–2875.
Surendran KP, Santha N, Mohanan P, et al. Temperature stable low loss ceramic dielectrics in (1− x)ZnAl2O4– xTiO2 system for microwave substrate applications. Eur Phys J B Condens Matter Complex Syst 2004, 41: 301–306.
Kolodiazhnyi T, Annino G, Spreitzer M, et al. Development of Al2O3–TiO2 composite ceramics for high-power millimeter-wave applications. Acta Mater 2009, 57: 3402–3409.
Lei W, Zou ZY, Chen ZH, et al. Controllable τf value of barium silicate microwave dielectric ceramics with different Ba/Si ratios. J Am Ceram Soc 2018, 101: 25–30.
Umemura R, Ogawa H, Yokoi A, et al. Low-temperature sintering-microwave dielectric property relations in Ba3(VO4)2 ceramic. J Alloys Compd 2006, 424: 388–393.
Cheng K, Li CC, Yin CZ, et al. Effects of Sr2+ substitution on the crystal structure, Raman spectra, bond valence and microwave dielectric properties of Ba3− x Sr x (VO4)2 solid solutions. J Eur Ceram Soc 2019, 39: 3738–3743.
Wu SP, Chen DF, Jiang C, et al. Synthesis of monoclinic CaSnSiO5 ceramics and their microwave dielectric properties. Mater Lett 2013, 91: 239–241.
Wei JS, Xu ZH, Liu P, et al. Ba9Y2Si6O24: A new silicate dielectric ceramic for microwave communication application. Mater Lett 2016, 178: 144–146.
Pang LX, Zhou D. Microwave dielectric properties of low-firing Li2 MO3 ( M = Ti, Zr, Sn) ceramics with B2O3–CuO addition. J Am Ceram Soc 2010, 93: 3614–3617.
Ogawa H, Yokoi A, Umemura R, et al. Microwave dielectric properties of Mg3(VO4)2– xBa3(VO4)2 ceramics for LTCC with near zero temperature coefficient of resonant frequency. J Eur Ceram Soc 2007, 27: 3099–3104.
Hao Z, Yue ZX, Meng SQ, et al. Low‐temperature sintering and microwave dielectric properties of Ba3(VO4)2–BaWO4 ceramic composites. J Am Ceram Soc 2008, 91: 3738–3741.
Meng SQ, Yue ZX, Zhuang H, et al. Microwave dielectric properties of Ba3(VO4)2–Mg2SiO4 composite ceramics. J Am Ceram Soc 2009, 93: 359–361.
Lv Y, Zuo RZ, Yue ZX. Structure and microwave dielectric properties of Ba3(VO4)2–Zn2- x SiO4− x ceramic composites. Mater Res Bull 2013, 48: 2011–2017.
Dong ZW, Zheng Y, Cheng P, et al. Microwave dielectric properties of low-temperature sinterable Ba3(VO4)2–LiMgPO4 composite ceramics. Mater Lett 2014, 131: 151–153.
Zhang J, Zuo RZ, Song J, et al. Low-loss and low-temperature firable Li2Mg3SnO6–Ba3(VO4)2 microwave dielectric ceramics for LTCC applications. Ceram Int 2018, 44: 2606–2610.
Ding LF, Song MQ, Ma HT. Novel temperature-stable Mg2TiO4–Ba3(VO4)2 microwave dielectric ceramics for LTCC applications. Mater Chem Phys 2022, 289: 126488.
Zhou T, Liu YH, Song KX, et al. New low- εr, temperature stable Mg3B2O6–Ba3(VO4)2 microwave composite ceramic for 5G application. J Am Ceram Soc 2021, 104: 3818–3822.
Zhang ZW, Tang Y, Li J, et al. High- Q and near-zero τf composite Li2Mg2TiO5–Sr3(VO4)2 ceramics for low-temperature co-fired ceramic applications. Ceram Int 2020, 46: 8281–8286.
Zhou HT, Xu ZN, Yan JY, et al. Temperature-stable BaAl2Si2O8–CaSnSiO5 microwave dielectric ceramics. Int J Appl Ceram Technol 2022, 19: 480–487.
Lazoryak BI. Design of inorganic compounds with tetrahedral anions. Russ Chem Rev 1996, 65: 287–305.
Rosica N, Vladislav K. Crystal chemistry of "glaserite" type compounds. Bulg Chem Commun 2013, 45: 418–426.
Tsunooka T, Androu M, Higashida Y, et al. Effects of TiO2 on sinterability and dielectric properties of high- Q forsterite ceramics. J Eur Ceram Soc 2003, 23: 2573–2578.
Song KX, Chen XM, Fan XC. Effects of Mg/Si ratio on microwave dielectric characteristics of forsterite ceramics. J Am Ceram Soc 2007, 90: 1808–1811.
Gao Y, Zheng Y, Lu XP, et al. Synthesis and microwave dielectric properties of CaMg2Si3O9 ceramics. J Mater Sci Mater Electron 2020, 31: 21583–21590.
Huang FY, Su H, Zhang Q, et al. Effect of Sr2+ substitution on the Raman spectrum, phase composition and microwave dielectric properties of CaMg1− x Sr x Si2O6 ceramics. Ceram Int 2022, 48: 3904–3911.
Hameed I, Li L, Liu XQ, et al. Ultra low loss (Mg1– x Ca x )2SiO4 dielectric ceramics ( x = 0 to 0.15) for millimeter wave applications. J Am Ceram Soc 2022, 105: 2010–2019.
Bafrooei HB, Liu B, Su WT, et al. Ca3MgSi2O8: Novel low-permittivity microwave dielectric ceramics for 5G application. Mater Lett 2020, 263: 127248.
Zhang PC, Chen XQ, Chen GT, et al. Structural dependence of microwave dielectric properties of Ca3MgSi2O8 ceramics. J Mater Sci 2022, 57: 10039–10050.
He YH, Wei XL, He GQ, et al. Sintering behavior, phase composition, microstructure, and dielectric properties of low-permittivity alkaline earth silicate Sr3MgSi2O8 ceramics. J Mater Sci Mater Electron 2022, 33: 26263–26275.
Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter 1993, 192: 55–69.
Courtney WE. Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans Microw Theory Tech 1970, 18: 476–485.
Hakki BW, Coleman PD. A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans Microw Theory Tech 1960, 8: 402–410.
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996, 6: 15–50.
Baroni S, de Gironcoli S, dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 2001, 73: 515–562.
Kroumova E, Aroyo MI, Perez-Mato JM, et al. Bilbao crystallographic server: Useful databases and tools for phase-transition studies. Phase Transitions 2003, 76: 155–170.
Klaver TPC, Madsen GKH, Drautz R. A DFT study of formation energies of Fe–Zn–Al intermetallics and solutes. Intermetallics 2012, 31: 137–144.
Kirklin S, Saal JE, Meredig B, et al. The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies. npj Comput Mater 2015, 1: 15010.
Park SG, Magyari-Köpe B, Nishi Y. Electronic correlation effects in reduced rutile TiO2 within the LDA+U method. Phys Rev B 2010, 82: 115109.
Park CH, Hong ST, Keszler DA. Superstructure of a phosphor material Ba3MgSi2O8 determined by neutron diffraction data. J Solid State Chem 2009, 182: 496–501.
Yonezaki Y. Structural influence on photochromic behaviors of Eu2+-doped glaserite-type silicates. J Lumin 2018, 195: 408–412.
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 1976, 32: 751–767.
Iwata T, Horie T, Fukuda K. Reinvestigation of crystal structure and structural disorder of Ba3MgSi2O8. Powder Diffr 2009, 24: 180–184.
Fukuda K, Ito M, Iwata T. Crystal structure and structural disorder of (Ba0.65Ca0.35)2SiO4. J Solid State Chem 2007, 180: 2305–2309.
Ye H, Li Y, Sun JL. Kinetic study on the anisotropic grain growth of elongated iron-containing mullite. Ceram Int 2019, 45: 12934–12941.
Mouiya M, Tingaud D, Tamraoui Y, et al. Crystallography and anisotropy of crystals shape in dense aluminum titanate ceramics. J Eur Ceram Soc 2024, 44: 4761–4771.
Bosman AJ, Havinga EE. Temperature dependence of dielectric constants of cubic ionic compounds. Phys Rev 1963, 129: 1593–1600.
Wu FF, Zhou D, Du C, et al. A comprehensive study on crystal structure, phase compositions of the BiVO4–LaVO4 binary dielectric ceramic system and a typical design of dielectric resonator antenna for C-band applications. Appl Mater Today 2024, 38: 102222.
Shannon RD. Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 1993, 73: 348–366.
Lyddane RH, Sachs RG, Teller E. On the polar vibrations of alkali halides. Phys Rev 1941, 59: 673–676.
Zhou D, Pang LX, Qi ZM. Crystal structure and microwave dielectric behaviors of ultra-low-temperature fired x(Ag0.5Bi0.5)MoO4–(1– x)BiVO4 (0.0 ≤ x ≤ 1.0) solid solution with scheelite structure. Inorg Chem 2014, 53: 9222–9227.
Zhou D, Pang LX, Wang H, et al. Phase transition, Raman spectra, infrared spectra, band gap and microwave dielectric properties of low temperature firing (Na0.5 x Bi1−0.5 x )(Mo x V1− x )O4 solid solution ceramics with scheelite structures. J Mater Chem 2011, 21: 18412–18420.
Pang LX, Zhou D, Yao XG, et al. Phase transitions and microwave dielectric behaviors of the (Bi1– x Li0.5 x Y0.5 x )(V1– x Mo x )O4 ceramics. J Am Ceram Soc 2023, 106: 3455–3461.
Kim ES, Chun BS, Freer R, et al. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. J Eur Ceram Soc 2010, 30: 1731–1736.
Wu FF, Zhou D, Du C, et al. Temperature stable Sm(Nb1− x V x )O4(0.0 ≤ x ≤ 0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications. J Mater Chem C 2021, 9: 9962–9971.
Wang XY, Liu T, Cao ZK, et al. Lattice vibrational characteristics and structure-property relationships of Ca(Mg1/2W1/2)O3 microwave dielectric ceramics with different sintering temperatures. Ceram Int 2022, 48: 1415–1422.
Yin CZ, Zou ZY, Cheng MF, et al. Microwave dielectric properties of CaB2O4–CaSiO3 system for LTCC applications. Crystals 2023, 13: 790.
Xue X, Li XM, Fu CL, et al. Sintering characteristics, phase transitions, and microwave dielectric properties of low-firing [(Na0.5Bi0.5) x Bi1– x ](W x V1– x )O4 solid solution ceramics. J Adv Ceram 2023, 12: 1178–1188.
Li JM, Wang ZX, Guo YF, et al. Influences of substituting of (Ni1/3Nb2/3)4+ for Ti4+ on the phase compositions, microstructures, and dielectric properties of Li2Zn[Ti1– x (Ni1/3Nb2/3) x ]3O8(0 ≤ x ≤ 0.3) microwave ceramics. J Adv Ceram 2023, 12: 760–777.
Du K, Yin CZ, Guo YB, et al. Phase transition and permittivity stability against temperature of CaSn1− x Ti x GeO5 ceramics. J Eur Ceram Soc 2022, 42: 147–153.
Su CX, Ao LY, Zhang ZW, et al. Crystal structure, Raman spectra and microwave dielectric properties of novel temperature-stable LiYbSiO4 ceramics. Ceram Int 2020, 46: 19996–20003.
Cheng K, Tang Y, Xiang HC, et al. Two novel low permittivity microwave dielectric ceramics Li2Ti MO5 ( M = Ge, Si) with abnormally positive τf. J Eur Ceram Soc 2019, 39: 2680–2684.
Song XQ, Du K, Zou ZY, et al. Temperature-stable BaAl2Si2O8–Ba5Si8O21-based low-permittivity microwave dielectric ceramics for LTCC applications. Ceram Int 2017, 43: 14453–14456.
Manu KM, Karthik C, Leu LC, et al. Crystal structure and microwave dielectric properties of LiRE9(SiO4)6O2 ceramics (RE = La, Pr, Nd, Sm, Eu, Gd, and Er). J Am Ceram Soc 2013, 96: 1504–1511.
Kweon SH, Joung MR, Kim JS, et al. Low temperature sintering and microwave dielectric properties of B2O3-added LiAlSiO4 ceramics. J Am Ceram Soc 2011, 94: 1995–1998.
Thomas S, Sebastian MT. Microwave dielectric properties of SrRE4Si3O13 (RE=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, Yb, and Y) ceramics. J Am Ceram Soc 2009, 92: 2975–2981.
Mao ZY, Chen JJ, Sun L, et al. Control of green emitting intermediate phases in (Ba,Sr)3MgSi2O8:Eu2+,Mn2+ phosphors for dual-bands or tri-bands emission. Mater Res Bull 2015, 70: 908–913.
Song XQ, Xie MQ, Du K, et al. Synthesis, crystal structure and microwave dielectric properties of self-temperature stable Ba1− x Sr x CuSi2O6 ceramics for millimeter-wave communication. J Materiomics 2019, 5: 606–617.
Khan N, Dollimore D, Alexander K, et al. The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate. Thermochim Acta 2001, 367: 321–333.
Peng R, Lu YC, Zhang Q, et al. Amelioration of sintering and multi-frequency dielectric properties of Mg3B2O6: A mechanism study of nickel substitution using DFT calculation. J Adv Ceram 2021, 10: 1398–1407.
542
Views
197
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).