AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (25.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Fluoride transparent ceramics for solid-state lasers: A review

Xiang Li1,2Chen Hu1,3Qiang Liu2Dariusz Hreniak4Jiang Li1,3( )
Transparent Ceramics Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw 50-422, Poland
Show Author Information

Graphical Abstract

Abstract

Fluoride laser ceramics, which are employed as amplification media in solid-state lasers, have attracted considerable attention because of their excellent optical properties combined with other material parameters important for these applications, making them highly versatile materials. In this review, the fabrication and properties of fluoride laser ceramics, including CaF2, SrF2, and BaF2 ceramics, are comprehensively investigated. As the state-of-art analysis shows, while some ceramic materials of this type have shown promising properties suitable for practical applications, most still require further research in the field of basic research. Specifically, this article reviews the state of research, identifies issues and prevailing challenges, and outlines development trends for fluoride ceramics for solid-state laser applications. The information gathered here is an important compendium of knowledge both for researchers seeking to work in this field of science and as a source of the latest information for experienced professionals who are already continuing preimplementation work in this area.

References

[1]

Shen YX, Fu XP, Yao C, et al. Optical crystals for 1.3 μm all-solid-state passively Q-switched laser. Crystals 2022, 12: 1060.

[2]

Kang PQ, Zhang S, Zhang XL, et al. High power self-Q-switched Tm:YAP solid state laser based on the ground state reabsorption. Infrared Phys Techn 2022, 123: 104117.

[3]

Shen JP, Lu P, Xu SC, et al. First demonstration of watt-level LED-pumped actively Q-switched Nd:glass rod laser. Appl Phys B-Lasers O 2024, 130: 69.

[4]

Su XC, Wang YR, Yin YR, et al. Sub-100-fs Kerr-lens mode-locked Yb:Lu2O3 laser with more than 60% optical efficiency. Opt Lett 2024, 49: 145–148.

[5]

Zong MY, Zhang Z, Liu JJ, et al. All-solid-state 3-µm single-frequency Er:CaF2 laser with a stable and switchable wavelength. Opt Lett 2024, 49: 1786–1789.

[6]

Asshauer T, Latz C, Mirshahi A, et al. Femtosecond lasers for eye surgery applications: Historical overview and modern low pulse energy concepts. Adv Opt Technol 2021, 10: 393–408.

[7]

Chen JM, Jiang YE, Wang X, et al. High-stability, high-power diode-pumped mode-locked laser with a novel Nd:glass. Opt Commun 2024, 558: 130380.

[8]

Guo FF, Rong WL, Chen LJ, et al. Novel laser crystal Nd:LiY(MoO4)2: Crystal growth, characterization, and orthogonally polarized dual-wavelength laser. Cryst Growth Des 2024, 24: 1421–1428.

[9]
Zhao CC, Zhang PX, Li SM, et al. Development of rare-earth ion doped fluoride laser crystal. J Synth Cryst 2022, 51 : 1573–1587. (in Chinese)
[10]

Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J Am Ceram Soc 1995, 78: 1033–1040.

[11]

Guo LH, Shi Y, Tian F, et al. Microstructure and laser performance of fine-grained Yb:CaF2 transparent ceramics prepared by two-step sintering. Opt Mater 2023, 140: 113841.

[12]

Liu Q, Wang WL, Dai ZF, et al. Fabrication and long persistent luminescence of Ce3+–Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramics. J Rare Earth 2022, 40: 1699–1705.

[13]

Feng SW, Guo YC, Sun XM, et al. Elevating photoluminescence properties of Y3MgAl3SiO12:Ce3+ transparent ceramics for high-power white lighting. J Rare Earth 2023, 41: 649–657.

[14]

Zhang YQ, Zhou ZW, Mei BC. Efficient energy transfer of Ce to Nd in SrF2 transparent ceramics for enhancing NIR emission. J Eur Ceram Soc 2023, 43: 7076–7084.

[15]

Chen JM, Mei BC, Li WW, et al. Fabrication and spectral performance of Nd x :(La0.05Lu0.05Gd0.05Y0.05)Ca0.8− x F2.2+ x high-entropy transparent fluoride ceramics. Ceram Int 2024, 50: 6128–6134.

[16]

Chen PH, Li XY, Tian F, et al. Fabrication, microstructure, and properties of 8 mol% yttria-stabilized zirconia (8YSZ) transparent ceramics. J Adv Ceram 2022, 11: 1153–1162.

[17]

Zhang LX, Hu DJ, Snetkov IL, et al. A review on magneto–optical ceramics for Faraday isolators. J Adv Ceram 2023, 12: 873–915.

[18]

Jin XH, Dong MJ, Kan YM, et al. Fabrication of transparent AlON by gel casting and pressureless sintering. J Inorg Mater 2023, 38: 193–198.

[19]

Li WJ, Wang H, Tu BT, et al. Preparation and property of Mg0.9Al2.08O3.73N0.03 transparent ceramic with broad optical transmission range. J Inorg Mater 2022, 37: 969.

[20]

Zhu DY, Nikl M, Chewpraditkul W, et al. Development and prospects of garnet ceramic scintillators: A review. J Adv Ceram 2022, 11: 1825–1848.

[21]

Liu B, Sha K, Zhou QW, et al. One-step cold sintering process towards translucent BaF2 ceramics. J Eur Ceram Soc 2023, 43: 7053–7058.

[22]

Liu ZD, Cao Y, Wang JS, et al. Energy transfer and color tunable up-conversion luminescence in PrF3 and YbF3 co-doped SrF2 transparent ceramics. J Lumin 2023, 263: 120064.

[23]

Yasyrkina DS, Ermakova JA, Ivanov VK, et al. Synthesis of Ca1− x−y Yb x Er y F2+ x + y upconversion powders for the preparation of optical ceramics. J Struct Chem+ 2023, 64: 1733–1742.

[24]

Račiukaitis G. Ultra-short pulse lasers for microfabrication: A review. IEEE J Sel Top Quant 2021, 27: 1–12.

[25]

Kravtsov NV. Basic trends in the development of diode-pumped solid-state lasers. Quantum Electron 2001, 31: 661–677.

[26]

Tikhonchuk VT, Gong T, Jourdain N, et al. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype. Matter Radiat Extremes 2021, 6: 025902.

[27]

Byer RL. Diode laser-pumped solid-state lasers. Science 1988, 239: 742–747.

[28]

Zhao F, Li Y, Meng ZD. Successful treatment of hyperpigmentation from fixed drug eruption with a low-dose and large-spot Q-switched 1064 nm Nd:YAG laser. J Cosmet Dermatol-US 2023, 22: 2128–2130.

[29]

Hönninger C, Paschotta R, Graf M, et al. Ultrafast ytterbium-doped bulk lasers and laser amplifiers. Appl Phys B 1999, 69: 3–17.

[30]

Dong J, Xu GZ, Ma J, et al. Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals. Opt Mater 2012, 34: 959–964.

[31]
Xu MM, Fang YH, Hu M, et al. Exploring the effect of transverse patterns on the temporal characteristics in self-mode-locked Nd:YVO4 lasers. Opt Commun 2022: 129119.
[32]

Ji YY, Hu M, Xv MM, et al. Exploring the spatial hole burning effect on the mode-locking characteristics of self-mode-locked Nd:YVO4 lasers. Opt Commun 2023, 549: 129883.

[33]

Fan L, Sun R, Wang LM, et al. High-power and efficient orthogonally-polarized dual-wavelength Nd:YLF laser. Laser Phys 2022, 32: 125001.

[34]

Ma QL, Mo HD, Zhao J. High-energy high-efficiency Nd:YLF laser end-pump by 808 nm diode. Opt Commun 2018, 413: 220–223.

[35]

Jouini A, Brenier A, Guyot Y, et al. Spectroscopic and laser properties of the near-infrared tunable laser material Yb3+-doped CaF2 crystal. Cryst Growth Des 2008, 8: 808–811.

[36]

Machinet G, Andriukaitis G, Sévillano P, et al. High-gain amplification in Yb:CaF2 crystals pumped by a high-brightness Yb-doped 976 nm fiber laser. Appl Phys B 2013, 111: 495–500.

[37]

Ma JS, Pan JX, Wang J, et al. High signal-noise ratio passively mode-locked femtosecond Yb:CaF2 laser at 1034 nm. Optik 2021, 241: 166330.

[38]

Wang SZ, Jiang DP, Wu QH, et al. Spectral properties and highly efficient continuous-wave laser operation in Nd,Gd:CaF2 crystals. J Alloys Compd 2019, 781: 629–632.

[39]
Liu J, Liu JF, Su LB, et al. Effects of Gd3+/Y3+ codoping on the spectral properties of Nd:CaF2 crystals. Acta Phys Sin 2016, 65 : 054207. (in Chinese)
[40]

Zou ZT, He YF, Yu H, et al. Photoluminescence property and laser performance in Yb-doped Sr1− x Gd x F2+ x single crystals. Opt Mater Express 2018, 8: 1747–1753.

[41]

Wu YJ, Zou ZT, Wang C, et al. Broadly tunable and passively mode-locked operations of Yb3+,Gd3+:SrF2 laser. IEEE J Sel Top Quant 2019, 25: 1100405.

[42]

Zhao MF, Wang C, Hao QQ, et al. High single-pulse energy passively Q-switched laser based on Yb,Gd:SrF2 crystal. Chin Opt Lett 2020, 18: 101401.

[43]
Agnesi A, Greborio A, Pirzio F, et al. 80-fs Nd:silicate glass laser pumped by a single-mode 200-mW diode. Opt Express 2010, 18 : 10098–10103.
[44]

Brauch U, Röcker C, Graf T, et al. High-power, high-brightness solid-state laser architectures and their characteristics. Appl Phys B 2022, 128: 58.

[45]

Li DW, Wang T, Yin XL, et al. Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping. Chin Phys B 2022, 31: 094210.

[46]

Yang XL, Wang WC, Zhang QY. BaF2 modified Cr3+/Ho3+ co-doped germanate glass for efficient 2.0 μm fiber lasers. J Non-Cryst Solids 2018, 482: 147–153.

[47]

Huang SJ, Xiao YB, Liu JL, et al. Nd3+-doped antimony germanate glass for 1.06 μm fiber lasers. J Non-Cryst Solids 2019, 518: 10–17.

[48]

Khalid M, Chen GY, Bei J, et al. Microchip and ultra-fast laser inscribed waveguide lasers in Yb3+germanate glass. Opt Mater Express 2019, 9: 3557.

[49]

Ding N, Diao JL, Zhang DW, et al. Spectroscopic properties of Yb3+ and Nd3+ co-doped tellurite glass for 1.0 μm laser application. Ceram Int 2020, 46: 25633–25637.

[50]

Denker BI, Dorofeev VV, Galagan BI, et al. A 200 mW, 2.3 µm Tm3+-doped tellurite glass fiber laser. Laser Phys Lett 2020, 17: 095101.

[51]

Liu JL, Wang WC, Xiao YB, et al. Nd3+-doped TeO2–MoO3–ZnO tellurite glass for a diode-pump 1.06 μm laser. J Non Cryst Solids 2019, 506: 32–38.

[52]

Li SS, Wang YL, Lu ZW, et al. Hundred-Joule-level, nanosecond-pulse Nd:glass laser system with high spatiotemporal beam quality. High Pow Laser Sci Eng 2016, 4: e10.

[53]

Ji SZ, Huang WF, Wang JF, et al. LD end-pumped Joule-level square-rod Nd:glass laser amplifier with high efficiency. Opt Laser Technol 2021, 135: 106634.

[54]

Gong L, Zhang H, Qian ZL, et al. Generation of 1.8-W average power from a diode-pumped femtosecond rotary Nd:glass disk laser. IEEE Photonics J 2020, 12: 7906811.

[55]

Dorrer C, Consentino A, Cuffney R, et al. Spectrally tunable, temporally shaped parametric front end to seed high-energy Nd:glass laser systems. Opt Express 2017, 25: 26802–26814.

[56]
Dong JS, Wang QG, Xu J, et al. Growth and spectral properties of Ho,Y:CaF2 crystal grown with porous crucible TGT method. J Synth Cryst 2022, 51 : 200–207. (in Chinese)
[57]

Hao Q, Li WX, Pan HF, et al. Laser-diode pumped 40-W Yb:YAG ceramic laser. Opt Express 2009, 17: 17734–17738.

[58]

Ikesue A, Aung YL. Ceramic laser materials. Nat Photonics 2008, 2: 721–727.

[59]

Taira T. Ceramic YAG lasers. C R Phys 2007, 8: 138–152.

[60]

Rao H, Liu ZJ, Cong ZH, et al. High power YAG/Nd:YAG/YAG ceramic planar waveguide laser. Laser Phys Lett 2017, 14: 045801.

[61]

Kemp A, Valentine G, Burns D. Progress towards high-power, high-brightness neodymium-based thin-disk lasers. Prog Quant Electron 2004, 28: 305–344.

[62]

Zhang LX, Li XY, Hu DJ, et al. Fabrication and properties of non-stoichiometric Tb2(Hf1– x Tb x )2O7– x magneto-optical ceramics. J Adv Ceram 2022, 11: 784–793.

[63]

Wang DW, Wang JP, Yuan HC, et al. Metre-scale Y3Al5O12 (YAG) transparent ceramics by vacuum reactive sintering. J Inorg Mater 2023, 38: 1483.

[64]
Yasuhara R, Kawashima T, Sekine T, et al. 213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror. Opt Lett 2008, 33 : 1711–1713.
[65]

Uehara H, Tokita S, Kawanaka J, et al. Optimization of laser emission at 2.8 μm by Er:Lu2O3 ceramics. Opt Express 2018, 26: 3497–3507.

[66]

Lucca A, Jacquemet M, Druon F, et al. High-power tunable diode-pumped Yb3+:CaF2 laser. Opt Lett 2004, 29: 1879–1881.

[67]

Kitajima S, Yamakado K, Shirakawa A, et al. Yb3+-doped CaF2–LaF3 ceramics laser. Opt Lett 2017, 42: 1724–1727.

[68]

Hatch SE, Parsons WF, Weagley RJ. Hot-pressed polycrystalline CaF2:Dy2+ laser. Appl Phys Lett 1964, 5: 153–154.

[69]

Ikesue A, Yoshida K. Influence of pore volume on laser performance of Nd:YAG ceramics. J Mater Sci 1999, 34: 1189–1195.

[70]

Ikesue A, Yoshida K. Scattering in polycrystalline Nd:YAG lasers. J Am Ceram Soc 1998, 81: 2194–2196.

[71]

Ikesue A, Yoshida K, Yamamoto T, et al. Optical scattering centers in polycrystalline Nd:YAG laser. J Am Ceram Soc 1997, 80: 1517–1522.

[72]

Ikesue A, Taira T, Sato Y, et al. High-performance microchip lasers using polycrystalline Nd: YAG ceramics. J Ceram Soc JPN 2000, 108: 428–430.

[73]

Ikesue A, Kamata K, Yoshida K. Effects of neodymium concentration on optical characteristics of polycrystalline Nd:YAG laser materials. J Am Ceram Soc 1996, 79: 1921–1926.

[74]
Takakimi Y, Hideki Y, Hiroo Y. Production of fine powder of yttrium aluminum garnet. JP Patent 10101411A, 1998.
[75]
Takakimi Y, Hideki Y, Moriteru I. Production of fine powdery staring material for yttrium aluminum garnet. JP Patent 10101334, 1998.
[76]
Tokio K, Hideki Y, Moriteru I. Production of yttrium aluminum garnet fine powder. JP Patent 10101333, 1998.
[77]

Lu JR, Prabhu M, Song J, et al. Optical properties and highly efficient laser oscillation of Nd: YAG ceramics. Appl Phys B 2000, 71: 469–473.

[78]

Lu JR, Ueda KI, Yagi H, et al. Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—A new generation of solid state laser and optical materials. J Alloys Compd 2002, 341: 220–225.

[79]
Lu JR, Murai T, Takaichi K, et al. 72 W Nd:Y3Al5O12 ceramic laser. Appl Phys Lett 2001, 78 : 3586–3588.
[80]

Lu JR, Song J, Prabhu M, et al. High-power Nd:Y3Al5O12 ceramic laser. Jpn J Appl Phys 2000, 39: L1048.

[81]
Yamamoto RM, Bhachu BS, Cutter KP, et al. The use of large transparent ceramics in a high powered, diode pumped solid-state laser. In: Advanced Solid-State Photonics. California: Optica Publishing Group, 2008: WC5.
[82]
Mandl A, Klimek DE. Textron’s J-HPSSL 100 kW ThinZag Laser Program. In: Proceedings of the CLEO/QELS: 2010 Laser Science to Photonic Applications, California, USA, 2010: 16–21.
[83]
Marmo J, Injeyan H, Komine H, et al. Joint high power solid state laser program advancements at Northrop Grumman. In: Proceedings of SPIE-The International Society for Optical Engineering, California, USA, 2009: 719507.
[84]

Li Q, Wang Y, Wang J, et al. High transparency Pr:Y2O3 ceramics: A promising gain medium for red emission solid-state lasers. J Adv Ceram 2022, 11: 874–881.

[85]

Yang CL, Huang JQ, Huang QF, et al. Optical, thermal, and mechanical properties of (Y1− x Sc x )2O3 transparent ceramics. J Adv Ceram 2022, 11: 901–911.

[86]

Liu Y, Qin XP, Gan L, et al. Preparation of sub-micron spherical Y2O3 particles and transparent ceramics. J Inorg Mater 2024, 39: 691–696.

[87]

Liu XQ, Jing W, Hao QQ, et al. Characterisation of passively Q-switched Yb:Lu2O3 ceramic laser based on graphdiyne absorber. Infrared Phys Techn 2021, 115: 103739.

[88]

Lu JR, Lu JH, Murai T, et al. Nd3+:Y2O3 ceramic laser. Jpn J Appl Phys 2001, 40: L1277.

[89]

Lu JR, Takaichi K, Uematsu T, et al. Yb3+:Y2O3 ceramics—A novel solid-state laser material. Jpn J Appl Phys 2002, 41: L1373–L1375.

[90]

Xu CW, Yang CD, Zhang H, et al. Efficient laser operation based on transparent Nd:Lu2O3 ceramic fabricated by spark plasma sintering. Opt Express 2016, 24: 20571–20579.

[91]

Klopp P, Petrov V, Griebner U, et al. Highly efficient mode-locked Yb:Sc2O3 laser. Opt Lett 2004, 29: 391–393.

[92]

Toci G, Hostaša J, Patrizi B, et al. Fabrication and laser performances of Yb:Sc2O3 transparent ceramics from different combination of vacuum sintering and hot isostatic pressing conditions. J Eur Ceram Soc 2020, 40: 881–886.

[93]

Dai ZF, Liu Q, Toci G, et al. Fabrication and laser oscillation of Yb:Sc2O3 transparent ceramics from co-precipitated nano-powders. J Eur Ceram Soc 2018, 38: 1632–1638.

[94]

Liu ZY, Toci G, Pirri A, et al. Fabrication, microstructures, and optical properties of Yb:Lu2O3 laser ceramics from co-precipitated nano-powders. J Adv Ceram 2020, 9: 674–682.

[95]

Esser S, Xu XD, Wang J, et al. Single-crystal and ceramic Yb:Lu2O3 gain media for thin-disk oscillators. Appl Phys B 2023, 129: 160.

[96]

Esser S, Röhrer C, Xu XD, et al. Ceramic Yb: Lu2O3 thin-disk laser oscillator delivering an average power exceeding 1 kW in continuous-wave operation. Opt Lett 2021, 46: 6063–6066.

[97]

Tokurakawa M, Shirakawa A, Ueda KI, et al. Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator. Opt Express 2009, 17: 3353–3361.

[98]

Tokurakawa M, Shirakawa A, Ueda KI, et al. Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser. Opt Lett 2007, 32: 3382–3384.

[99]

Paradis C, Modsching N, Wittwer VJ, et al. Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser. Opt Express 2017, 25: 14918–14925.

[100]
Hostaša J. Ceramics for Laser Technologies. In: Encyclopedia of Materials: Technical Ceramics and Glasses. Pomeroy M, Eds. Oxford: Elsevier, 2021: 110–124.
[101]

Basiev TT, Doroshenko ME, Konyushkin VA, et al. SrF2:Nd3+ laser fluoride ceramics. Opt Lett 2010, 35: 4009–4011.

[102]

Liu ZY, Ikesue A, Li J. Research progress and prospects of rare-earth doped sesquioxide laser ceramics. J Eur Ceram Soc 2021, 41: 3895–3910.

[103]

Cardinali V, Marmois E, Le Garrec B, et al. Determination of the thermo–optic coefficient d n/d T of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature. Opt Mater 2012, 34: 990–994.

[104]

Kuznetsov SV, Alexandrov AA, Fedorov PP. Optical fluoride nanoceramics. Inorg Mater 2021, 57: 555–578.

[105]

Basiev TT, Doroshenko ME, Fedorov PP, et al. Efficient laser based on CaF2–SrF2–YbF3 nanoceramics. Opt Lett 2008, 33: 521–523.

[106]

Basiev TT, Konyushkin VA, Konyushkin DV, et al. First ceramic laser in the visible spectral range. Opt Mater Express 2011, 1: 1511–1514.

[107]

Jiang YG, Jiang BX, Zhang PD, et al. Transparent Nd-doped Ca1– x Y x F2+ x ceramics prepared by the ceramization of single crystals. Mater Design 2017, 113: 326–330.

[108]

Aubry P, Bensalah A, Gredin P, et al. Synthesis and optical characterizations of Yb-doped CaF2 ceramics. Opt Mater 2009, 31: 750–753.

[109]
Mortier M, Lyberis A, Suganuma A, et al. Last advances in Yb3+ doped CaF2 ceramics synthesis. In: Solid State Lasers XX: Technology and Devices. Clarkson W A, Hodgson N, Shori R, Eds. California, USA, 2011: 7912R.
[110]

Jiang YG, Jiang BX, Jiang N, et al. Heat-driven tailored for eliminating Nd3+ re-clusters in Nd3+,Gd3+-codoped SrF2 laser ceramic. J Am Ceram Soc 2020, 103: 2562–2568.

[111]

Basiev TT, Doroshenko ME, Konyushkin VA, et al. Lasing in diode-pumped fluoride nanostructure F2:LiF colour centre ceramics. Quantum Electron+ 2007, 37: 989–990.

[112]

Sherry WM, Sande JBV. Microstructural characterization of calcium flouride single crystals deformed in steady state. J Mater Sci 1981, 16: 1477–1489.

[113]

Reppich B. Inhomogeneous dislocation distributions and the formation of dislocation cell structure. J Mater Sci 1971, 6: 267–269.

[114]
Basiev TT, Demidenko VA, Dykel'skii KV, et al. Optical fluoride and oxysulphide ceramics preparation and characterization. In: Developments in Ceramic Materials Research. Dena R, Ed. New York: Nova Science Publishers, Inc., 2007: 53–95.
[115]
Alimov OK, Basiev TT, Doroshenko ME, et al. Spectroscopic and oscillation properties of Yb3+ ions in BaF2–SrF2–CaF2 crystals and ceramics. In: Advanced Solid-State Photonics. California: Optica Publishing Group, 2009: WB25.
[116]

Akchurin MS, Basiev TT, Demidenko AA, et al. CaF2:Yb laser ceramics. Opt Mater 2013, 35: 444–450.

[117]

Popov PA, Dukel’skiĭ KV, Mironov IA, et al. Thermal conductivity of CaF2 optical ceramic. Dokl Phys 2007, 52: 7–9.

[118]

Basiev TT, Voronov VV, Konyushkin VA, et al. Optical lithium fluoride ceramics. Dokl Phys 2007, 52: 677–680.

[119]

Bol’shchikov FA, Garibin EA, Gusev PE, et al. Nanostructured Tm:CaF2 ceramics: Potential gain media for two micron lasers. Quantum Electron 2011, 41: 193–197.

[120]

Lyapin AA, Fedorov PP, Garibin EA, et al. Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials. Opt Mater 2013, 35: 1859–1864.

[121]

Ryabochkina PA, Lyapin AA, Osiko VV, et al. Structural, spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics. Quantum Electron 2012, 42: 853–857.

[122]

Šulc J, Němec M, Švejkar R, et al. Diode-pumped Er:CaF2 ceramic 2.7 μm tunable laser. Opt Lett 2013, 38: 3406–3409.

[123]

Jiang YG, Jiang BX, Jiang N, et al. Er3+-doped CaF2 polycrystalline ceramic with perfect transparency for mid-infrared laser. J Am Ceram Soc 2020, 103: 5808–5812.

[124]

Kuznetsov SV, Fedorov PP. Morphological stability of solid–liquid interface during melt crystallization of M1− x R x F2+ x solid solutions. Inorg Mater 2008, 44: 1434–1458.

[125]

Li J, Pan YB, Zeng YP, et al. The history, development, and future prospects for laser ceramics: A review. Int J Refract Met H 2013, 39: 44–52.

[126]

Liu XW, Tan GL, Zhou ZW, et al. Effect of Pr3+ doping concentration on microstructure and optical properties of transparent BaF2 ceramics. J Alloys Compd 2022, 895: 162623.

[127]

Wei JB, Toci G, Pirri A, et al. Fabrication and property of Yb:CaF2 laser ceramics from co-precipitated nanopowders. J Inorg Mater 2019, 34: 1341–1348.

[128]

Guo LH, Shi Y, Chen GM, et al. Fabrication of sub-micrometer sized Er:CaF2 transparent ceramics for eye-safe lasers. Opt Mater 2022, 133: 113052.

[129]

Liu XW, Zhou ZW, Li WW, et al. The effects of the solution reactant concentration and temperature on the preparation of Pr3+:BaF2 transparent ceramics. J Am Ceram Soc 2021, 104: 3862–3872.

[130]

Hu SC, De Jonghe LC. Pre-eutectic densification in MgF2–CaF2. Ceram Int 1983, 9: 123–126.

[131]
Kong LB, Huang YZ, Que WX, et al. Transparent Ceramics. Switzerland: Springer Cham, 2015.
[132]

Chen L, Mei BC, Li WW, et al. Effect of reactive raw materials and pre-loading pressure on the microstructure and transmittance of pure CaF2 transparent ceramics. Mater Chem Phys 2023, 297: 127315.

[133]

Ermakova YA, Pominova DV, Voronov VV, et al. Synthesis of SrF2:Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F. Dalton T 2022, 51: 5448–5456.

[134]

Li WW, Huang HJ, Mei BC, et al. Synthesis of highly sinterable Yb:SrF2 nanopowders for transparent ceramics. Opt Mater 2018, 75: 7–12.

[135]

Li WW, Huang HJ, Mei BC, et al. Comparison of commercial and synthesized CaF2 powders for preparing transparent ceramics. Ceram Int 2017, 43: 10403–10409.

[136]
Ishizawa H. CaF2 translucent ceramics and manufacturing method of CaF2 translucent ceramics. US patent 9586867, 2017.
[137]

Li WW, Jing W, Mei BC, et al. Effect of NaF doping on the transparency, microstructure and spectral properties of Yb3+:CaF2 transparent ceramics. J Eur Ceram Soc 2020, 40: 4572–4577.

[138]

Liu ZD, Shen QL, Fu SC, et al. Effects of LiF sintering additive on the microstructure and mechanical properties of hot-pressed CaF2 transparent ceramics. Opt Mater X 2022, 14: 100147.

[139]

Liu ZD, Shen QL, Cao Y, et al. Enhanced visible luminescence intensities in hot-pressed Pr, La:SrF2 transparent ceramics by co-doping with LaF3. J Lumin 2023, 256: 119652.

[140]

Kawano N, Kato T, Nakauchi D, et al. Dosimetric and scintillation properties of Tm-doped BaF2 translucent ceramics. J Mater Sci Mater El 2023, 34: 962.

[141]
Kawano N, Kato T, Nakauchi D, et al. TSL, OSL and scintillation properties of Tb-doped barium fluoride translucent ceramics. Opt Mater 2023, 141 : 113948.
[142]

Feng YG, Chen GM, Guo LH, et al. Fabrication of Er:SrF2 transparent ceramics by air pre-sintering and hot isostatic pressing. Opt Mater 2023, 142: 114009.

[143]

Li JL, Chen XQ, Tang LF, et al. Fabrication and properties of transparent Nd-doped BaF2 ceramics. J Am Ceram Soc 2019, 102: 178–184.

[144]

Chen XQ, Wu YQ. High concentration Ce3+ doped BaF2 transparent ceramics. J Alloys Compd 2020, 817: 153075.

[145]

Zhang CH, Yi GQ, Sun ZC, et al. Cr3+ doped CaF2 transparent ceramic with effective broadband near-infrared emission. Mater Lett 2023, 346: 134506.

[146]

Yi GQ, Liu ZD, Li WW, et al. Gd3+ doping induced microstructural evolution and enhanced visible luminescence of Pr3+ activated calcium fluoride transparent ceramics. Ceram Int 2023, 49: 7333–7340.

[147]

Guo NJ, Gong YP, Zhu GS, et al. Preparation and properties of 5 at% Er3+:SrF2 transparent ceramics by cold sintering. Opt Mater 2023, 142: 114073.

[148]

Gao J, Xia ZG, Ding Q, et al. Cold sintering of highly transparent calcium fluoride nanoceramic as a universal platform for high-power lighting. Adv Funct Mater 2023, 33: 2302088.

[149]

Samuel P, Ishizawa H, Ezura Y, et al. Spectroscopic analysis of Eu doped transparent CaF2 ceramics at different concentration. Opt Mater 2011, 33: 735–737.

[150]

Song LM, Gao JH, Wang X, et al. Highly luminescent Cit/CaF2:Ce3+,Tb3+ nanoparticles and detection of Cu2+ ions. J Lumin 2020, 226: 117445.

[151]

Bensalah A, Mortier M, Patriarche G, et al. Synthesis and optical characterizations of undoped and rare-earth-doped CaF2 nanoparticles. J Solid State Chem 2006, 179: 2636–2644.

[152]

Tian Y, Yu JC, Qi XH, et al. Bio-conjugation of CaF2:Eu/chitosan nanoparticles with BSA and photoluminescent properties. J Mater Sci-Mater El 2009, 20: 439–444.

[153]

Lian HZ, Liu J, Ye ZR, et al. Synthesis and photoluminescence properties of erbium-doped BaF2 nanoparticles. Chem Phys Lett 2004, 386: 291–294.

[154]

Bender CM, Burlitch JM, Barber D, et al. Synthesis and fluorescence of neodymium-doped barium fluoride nanoparticles. Chem Mater 2000, 12: 1969–1976.

[155]

Abid N, Khan AM, Shujait S, et al. Synthesis of nanomaterials using various top–down and bottom–up approaches, influencing factors, advantages, and disadvantages: A review. Adv Colloid Interfac 2022, 300: 102597.

[156]
Singh SG, Singh AK, Sen S, et al. Synthesis and luminescence studies of Mn doped CaF2. In: International Conference on Physics of Emerging Functional Materials (PEFM-2010). Aswal DK, Debnath AK, Eds. Mumbai: AIP Publishing, 2010: 340–342.
[157]

Zhi GL, Song JH, Mei BC, et al. Synthesis and characterization of Er3+ doped CaF2 nanoparticles. J Alloys Compd 2011, 509: 9133–9137.

[158]
Sen S, Singh SG, Patra GD, et al. Synthesis of optically transparent ceramic of CaF2 doped with Mn and Ce for thermoluminescent dosimetry. In: Solid State Physics. Mukhopadhyay R, Ed. USA: American Institute of Physics, 2012: 279–280.
[159]

Singh SG, Sen S, Patra GD, et al. Fabrication, properties and thermo–luminescent dosimetric application of CaF2:Mn transparent ceramic. Nucl Instrum Meth B 2012, 287: 51–55.

[160]
Li WW, Mei BC, Li XN, et al. Effects of Na+ on spectral properties of Er3+:CaF2 transparent ceramic. Key Eng Mater 2013, 531–532 : 307–311.
[161]
Sen S, Mittal G, Deshpande SK, et al. Effect of porosity on Impedance of CaF2 ceramic. In: Solid State Physics. Chauhan A K, Murli C, Gadkari S C, Eds. USA: American Institute of Physics, 2013: 936–937.
[162]

Liu ZD, Mei BC, Song JH, et al. Fabrication and optical characterizations of Yb, Er codoped CaF2 transparent ceramic. J Eur Ceram Soc 2014, 34: 4389–4394.

[163]

Zhou WB, Cai FF, Zhi GL, et al. Fabrication of highly-transparent Er:CaF2 ceramics by hot-pressing technique. Mater Sci-Poland 2014, 32: 358–363.

[164]

Liu ZD, Mei BC, Song JH, et al. Microstructure and optical properties of hot-pressed Er:CaF2 transparent ceramics. J Alloys Compd 2015, 646: 760–765.

[165]

Singh SG, Sen S, Patra GD, et al. Luminescence properties of CaF2:Mn optically transparent ceramic. J Lumin 2015, 166: 222–226.

[166]

Li WW, Mei BC, Song JH, et al. Yb3+ doped CaF2 transparent ceramics by spark plasma sintering. J Alloys Compd 2016, 660: 370–374.

[167]

Liu XY, Mei BC, Li WW, et al. Effect of sintering temperature on the microstructure and transparency of Nd,Y:CaF2 ceramics. Ceram Int 2016, 42: 13285–13290.

[168]

Sarthou J, Aballéa P, Patriarche G, et al. Wet-route synthesis and characterization of Yb:CaF2 optical ceramics. J Am Ceram Soc 2016, 99: 1992–2000.

[169]

Sun ZC, Mei BC, Li WW, et al. Synthesis and optical characterizations of Nd,Y:CaF2 transparent ceramics. Opt Mater 2017, 71: 35–40.

[170]

Xiong F, Song JH, Li WW, et al. Influence of sintering conditions on the microstructure and optical properties of Eu:CaF2 transparent ceramic. Mater Res Bull 2017, 95: 138–145.

[171]

Kuznetsov SV, Morozov OA, Gorieva VG, et al. Synthesis and luminescence studies of CaF2:Yb:Pr solid solutions powders for photonics. J Fluorine Chem 2018, 211: 70–75.

[172]

Liu L, Song JH, Li WW, et al. Effect of sintering temperature on the microstructure and optical properties of Mn:CaF2 transparent ceramics. Mater Chem Phys 2018, 204: 345–349.

[173]

Xie XY, Mei BC, Song JH, et al. Fabrication and spectral properties of Nd,La:CaF2 transparent ceramics. Opt Mater 2018, 76: 111–116.

[174]

Yi GQ, Li WW, Song JH, et al. Structural, spectroscopic and thermal properties of hot-pressed Nd:(Ca0.94Gd0.06)F2.06 transparent ceramics. J Eur Ceram Soc 2018, 38: 3240–3245.

[175]

Yi GQ, Li WW, Song JH, et al. The effect of Gd3+ ions on fabrication and luminescence properties of Nd3+-doped (Ca1− x Gd x )F2+ x transparent ceramics. Mater Res Bull 2018, 102: 304–310.

[176]

Liu JS, Song JH, Mei BC, et al. Fabrication and mid-infrared property of Er:CaF2 transparent ceramics. Mater Res Bull 2019, 111: 158–164.

[177]

Yang Y, Li WW, Mei BC, et al. Synthesis and enhanced upconversion luminescence upon two-wavelength excitation of Er3+:CaF2 transparent ceramics. J Lumin 2019, 213: 504–509.

[178]

Yi GQ, Li WW, Song JH, et al. Preparation and characterizations of Pr3+:CaF2 transparent ceramics with different doping concentrations. Ceram Int 2019, 45: 3541–3546.

[179]

Zhou ZW, Li WW, Song JH, et al. Application of Judd–Ofelt theory in analyzing Nd3+ doped SrF2 and CaF2 transparent ceramics. J Eur Ceram Soc 2019, 39: 2446–2452.

[180]

Zhou ZW, Mei BC, Song JH, et al. Effects of Sr2+ content on microstructure and spectroscopic properties of Nd3+ doped Ca1− x Sr x F2 transparent ceramics. J Alloys Compd 2019, 811: 152046.

[181]

Li WW, Huang HJ, Mei BC, et al. Effect of Yb concentration on the microstructures, spectra, and laser performance of Yb:CaF2 transparent ceramics. J Am Ceram Soc 2020, 103: 5787–5795.

[182]

Li WW, Huang HJ, Mei BC, et al. Fabrication, microstructure and laser performance of Yb3+ doped CaF2–YF3 transparent ceramics. Ceram Int 2020, 46: 19530–19536.

[183]
Liu Q, Liu Y, Wei JB, et al. Preparation and properties of Yb:CaF2 transparent ceramics. J Synth Cryst 2020, 49 : 799–803. (in Chinese)
[184]

Huang XY, Chen GM, Wei JB, et al. Fabrication of Yb, La:CaF2 transparent ceramics by air pre-sintering with hot isostatic pressing. Opt Mater 2021, 116: 111108.

[185]

Ling HR, Mei BC, Li WW, et al. Synthesis and optical characterizations of Yb3+:Ca x Sr1– x F2 transparent ceramics. Crystals 2021, 11: 652.

[186]

Yang Y, Zhou ZW, Mei BC, et al. Fabrication and upconversion luminescence properties of Er:SrF2 transparent ceramics compared with Er:CaF2. Ceram Int 2021, 47: 17139–17146.

[187]

Fan XL, Fan JT, Qian KC, et al. Preparation of MgF2–CaF2 nanocomposite ceramics with high infrared transmittance. J Eur Ceram Soc 2022, 42: 7203–7208.

[188]

Guo NJ, Zhu GS, Xu HR, et al. Preparation of CaF2 transparent ceramics by cold sintering. Ceram Int 2022, 48: 34184–34189.

[189]

Liu ZY, Wei JB, Toci G, et al. Microstructure and laser emission of Yb:CaF2 transparent ceramics fabricated by air pre-sintering and hot isostatic pressing. Opt Mater 2022, 129: 112540.

[190]

Zhan CJ, Mei BC, Sun ZC, et al. Fabrication and spectroscopic properties of hot-pressed Tb:CaF2 transparent ceramics with different doping concentrations. Opt Mater 2022, 126: 112128.

[191]

Lyberis A, Patriarche G, Gredin P, et al. Origin of light scattering in ytterbium doped calcium fluoride transparent ceramic for high power lasers. J Eur Ceram Soc 2011, 31: 1619–1630.

[192]

Li X, Hu C, Guo LH, et al. Optimization of Yb:CaF2 transparent ceramics by air pre-sintering and hot isostatic pressing. Ceramics 2024, 7: 1053–1065.

[193]

Breuer S, Lunghammer S, Kiesl A, et al. F anion dynamics in cation-mixed nanocrystalline LaF3:SrF2. J Mater Sci 2018, 53: 13669–13681.

[194]

Sorokin NI, Karimov DN, Smirnov AN, et al. Effect of heat treatment in a СF4 atmosphere on the ion-conductive properties of hot-pressed 95 mol% CeF3 × 5 mol% SrF2 ceramics. Crystallogr Rep+ 2019, 64: 105–109.

[195]

Li WW, Mei BC, Song JH, et al. Fabrication and optical property of highly transparent SrF2 ceramic. Mater Lett 2015, 159: 210–212.

[196]

Zhu CH, Song JH, Mei BC, et al. Fabrication and optical characterizations of CaF2–SrF2–NdF3 transparent ceramic. Mater Lett 2016, 167: 115–117.

[197]

Antuzevics A, Kemere M, Krieke G. Multisite formation in gadolinium doped SrF2 nanoparticles. J Alloys Compd 2018, 762: 500–507.

[198]

Liu J, Liu P, Wang J, et al. Fabrication and sintering behavior of Er:SrF2 transparent ceramics using chemically derived powder. Materials 2018, 11: 475.

[199]

Lyapin AA, Ryabochkina PA, Gushchin SV, et al. Upconversion luminescence of fluoride phosphors SrF2:Er,Yb under laser excitation at 1.5 μm. Opt Spectrosc 2018, 125: 537–542.

[200]

Zhou ZW, Li WW, Song JH, et al. Synthesis and characterization of Nd3+ doped SrF2 nanoparticles prepared by precipitation method. Ceram Int 2018, 44: 4344–4350.

[201]

Qin SY, Song JH, Wang WX, et al. Study in optical and mechanical properties of Nd3+,Y3+:SrF2 transparent ceramics prepared by hot-pressing and hot-forming techniques. Crystals 2019, 9: 619.

[202]

Yi GQ, Mei BC, Li WW, et al. Synthesis and luminescence characterization of Pr3+,Gd3+ co-doped SrF2 transparent ceramics. J Am Ceram Soc 2020, 103: 279–286.

[203]

Zhu T, Mei BC, Li WW, et al. Fabrication, microstructure and spectral properties of Nd:SrF2 transparent ceramics with different concentration of La3+ ions. Opt Mater 2019, 89: 598–603.

[204]

Gao YW, Mei BC, Li WW, et al. Effect of Yb3+ concentration on microstructure and optical properties of Yb:SrF2 transparent ceramics. Opt Mater 2020, 105: 109869.

[205]

Krahl T, Beer F, Relling A, et al. Toward luminescent composites by phase transfer of SrF2 : Eu3+ nanoparticles capped with hydrophobic antenna ligands. ChemNanoMat 2020, 6: 1086–1095.

[206]

Milisavljevic I, Wu YQ, Zych E. The effect of Gd3+ doping on luminescence properties of (Gd,Ce):SrF2 nanopowders and transparent ceramics. J Lumin 2020, 224: 117243.

[207]

Yu SQ, Wu YQ. Fabrication, microstructure and optical properties of Ce:SrF2 transparent ceramics. Opt Mater 2020, 105: 109898.

[208]

Liu ZD, Ji YM, Xu CY, et al. Microstructural, spectroscopic and mechanical properties of hot-pressed Er:SrF2 transparent ceramics. J Eur Ceram Soc 2021, 41: 4907–4914.

[209]

Liu ZD, Shen QL, Wang YQ, et al. Fabrication and optical characterizations of PrF3-doped SrF2 transparent ceramics. Opt Mater 2021, 122: 111710.

[210]

Liu ZD, Zhang SY, Dong PY, et al. Fabrication and optical characterizations of hot-pressed transparent SrF2/Nd:SrF2/SrF2 composite ceramic. J Eur Ceram Soc 2021, 41: 768–774.

[211]

Zheng CK, Sun ZC, Li WW, et al. Fabrication and spectral properties of Dy:SrF2 transparent ceramics. Mater Chem Phys 2021, 273: 125141.

[212]

Liu ZD, Liu Y, Fu SC, et al. Densification and microstructure evolution of hot-pressed Er:SrF2 transparent ceramics. Mater Chem Phys 2022, 278: 125682.

[213]
Ryszczyńska S, Grzyb T. NIR-to-NIR and NIR-to-vis up-conversion of SrF2:Ho3+ nanoparticles under 1156 nm excitation. Methods Appl Fluores 2022, 10 : 024001.
[214]

Yang Y, Mei BC, Zhou ZW, et al. Fabrication and spectroscopic investigations on Er3+,Ho3+:SrF2 transparent ceramics for 2.7 μm emission. J Eur Ceram Soc 2022, 42: 1722–1730.

[215]

Zhou ZW, Zhang YQ, Liu XW, et al. Effects of Nd3+ doping content on microstructure and spectral properties of Nd:SrF2 transparent ceramic. J Alloys Compd 2022, 926: 166898.

[216]

Zhou ZW, Zhang YQ, Zhou LP, et al. A novel co-precipitation method to fabricate the high-quality Nd:SrF2 transparent ceramic. Mater Lett 2022, 318: 132229.

[217]

Kuznetsov SV, Ermakova YA, Boldyrev KN, et al. Single-phase nanopowders of Sr0.85− x Ba x Eu0.15F2.15: Investigation of structure and X-ray luminescent properties. Ceram Int 2023, 49: 39189–39195.

[218]
Zhai PF, Mei BC, Song JH, et al. Preparation of Ce3+:BaF2 transparent ceramic by hot-pressed method. Chin J Lumin 2012, 33 : 698–706. (in Chinese)
[219]

Luo JM, Sahi S, Groza M, et al. Luminescence and scintillation properties of BaF2Ce transparent ceramic. Opt Mater 2016, 58: 353–356.

[220]

Luo JM, Ye LF, Xu JL. Preparation and properties of Ce3+:BaF2 transparent ceramics by vacuum sintering. J Nanosci Nanotechno 2016, 16: 3985–3989.

[221]

Kato T, Okada G, Fukuda K, et al. Development of BaF2 transparent ceramics and evaluation of the scintillation properties. Radiat Meas 2017, 106: 140–145.

[222]

Khanin V, Venevtsev I, Rodnyi P. Recent advances in the study of core-valence luminescence (cross luminescence). Review. Opt Mater 2023, 136: 113399.

[223]

Benemanskaya G, Garibin E, Gusev Y, et al. Photosensors for PET scanner on the base of BaF2 crystals. Nucl Instrum Meth A 2009, 610: 335–337.

[224]

Lyberis A, Stevenson AJ, Suganuma A, et al. Effect of Yb3+ concentration on optical properties of Yb:CaF2 transparent ceramics. Opt Mater 2012, 34: 965–968.

[225]

Jin DH, Liu B, Song KX, et al. Boosting densification and microwave dielectric properties in cold sintered BaF2 ceramics for 5.8 GHz WLAN applications. J Alloys Compd 2021, 886: 161141.

[226]

Nakamura F, Kato T, Okada G, et al. Scintillation and dosimeter properties of CaF2 transparent ceramics doped with Nd3+ produced by SPS. J Eur Ceram Soc 2017, 37: 4919–4924.

[227]

Wang P, Huang ZF, Morita K, et al. Transmittance enhancement of spark plasma sintered CaF2 ceramics by preheating commercial powder. J Eur Ceram Soc 2021, 41: 4609–4617.

[228]

Kallel T, Hassairi MA, Dammak M, et al. Spectra and energy levels of Yb3+ ions in CaF2 transparent ceramics. J Alloys Compd 2014, 584: 261–268.

[229]

Liu XQ, Hao QQ, Liu J, et al. Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines. Chinese Phys B 2022, 31: 114205.

[230]

Lu G, Mei BC, Song JH, et al. Fabrication and properties of highly transparent Nd-doped CaF2 ceramics. Mater Lett 2014, 115: 162–164.

[231]

Sun ZC, Mei BC, Li WW, et al. Effects of Nd concentration on microstructure and optical properties of Nd:CaF2 transparent ceramics. J Am Ceram Soc 2016, 99: 4039–4044.

[232]

Liu ZD, Mei BC, Song JH, et al. Optical characterizations of hot-pressed erbium-doped calcium fluoride transparent ceramic. J Am Ceram Soc 2014, 97: 2506–2510.

[233]
Xing RZ, Mei BC, Song JH, et al. Fluorescence and Judd–Ofelt analysis of Er3+ doped CaF2 transparent ceramic. Adv Mat Res 2014, 875–877 : 23–27.
[234]

Li WW, Liu ZD, Zhou ZW, et al. Characterizations of a hot-pressed Er and Y codoped CaF2 transparent ceramic. J Eur Ceram Soc 2016, 36: 3481–3486.

[235]
Liu ZD, Jia MY, Liu X, et al. Fabrication and characterizations of hot-pressed Er,Yb:CaF2 transparent ceramics. Bull Chin Ceram Soc 2018, 37 : 2417–2422. (in Chinese)
[236]

Liu ZD, Jia MY, Yi GQ, et al. Fabrication and microstructure characterizations of transparent Er:CaF2 composite ceramic. J Am Ceram Soc 2019, 102: 285–293.

[237]

Yang Y, Zhou ZW, Mei BC, et al. Energy transfer and controllable colors of upconversion emission in Er3+ and Dy3+ co-doped CaF2 transparent ceramics. J Eur Ceram Soc 2021, 41: 7835–7844.

[238]

Li WW, Huang HJ, Mei BC, et al. Fabrication and characterization of polycrystalline Ho:CaF2 transparent ceramics for 2.0 μm laser application. Mater Lett 2017, 207: 37–40.

[239]

Wan ZZ, Li WW, Mei BC, et al. Fabrication and spectral properties of Ho-doped calcium fluoride transparent ceramics. J Lumin 2020, 223: 117188.

[240]
Ghosh M, Sen S, Pitale SS, et al. Growth and optical properties of partially transparent Eu doped CaF2 ceramic. In: Solid State Physics Proceedings of the 58 th DAE Solid State Physics Symposium. Murli C, Bhattacharyya D, Gadkari S C, Eds. USA: AIP Publishing LLC, 2014: 592–594.
[241]

Ashurov MK, Nuritdinov I, Boiboboeva ST, et al. Optical properties of single crystals and nanoceramics of CaF2–SrF2–YbF3 solid solutions. Inorg Mater 2022, 58: 886–892.

[242]

Sorokin NI, Karimov DN, Komar’kova ON, et al. Effect of heat treatment in HF atmosphere on the optical and electrical properties of BaF2 ceramics. Inorg Mater 2009, 45: 1188–1192.

[243]

Batygov SK, Bolyasnikova LS, Demidenko VA, et al. BaF2:Ce3+ scintillation ceramics. Dokl Phys 2008, 53: 485–488.

[244]

Demidenko AA, Garibin EA, Gain SD, et al. Scintillation parameters of BaF2 and BaF2:Ce3+ ceramics. Opt Mater 2010, 32: 1291–1293.

[245]

Liu YL, Sun Q, Wang DW, et al. Development of the cold sintering process and its application in solid-state lithium batteries. J Power Sources 2018, 393: 193–203.

[246]

Yu T, Cheng J, Li L, et al. Current understanding and applications of the cold sintering process. Front Chem Sci Eng 2019, 13: 654–664.

[247]

Liu B, Lin FL, Hu CC, et al. Novel transparent LiF ceramics enabled by cold sintering at 150 °C. Scripta Mater 2022, 220: 114917.

[248]

Akinribide OJ, Mekgwe GN, Akinwamide SO, et al. A review on optical properties and application of transparent ceramics. J Mater Res Technol 2022, 21: 712–738.

[249]

Kato T, Nakauchi D, Kawaguchi N, et al. Radio-photoluminescence properties of CaF2 transparent and opaque ceramics. Curr Appl Phys 2020, 20: 1195–1200.

[250]

Kato T, Nakauchi D, Kawaguchi N, et al. Radio-photoluminescence phenomenon in non-doped CaF2 ceramic. Mater Lett 2020, 270: 127688.

[251]

Nakamura F, Kato T, Okada G, et al. Scintillation and dosimeter properties of CaF2 transparent ceramic doped with Eu2+. Ceram Int 2017, 43: 604–609.

[252]

Kato T, Nakauchi D, Kawaguchi N, et al. Dy-concentration dependence on dosimetric properties of CaF2 transparent ceramics. Opt Mater 2022, 132: 112785.

[253]

Kawano N, Kato T, Conner RL, et al. Radiation response properties of Ce-doped CaF2 transparent ceramics. Mater Res Bull 2024, 171: 112609.

[254]

Kato T, Okada G, Nakauchi D, et al. Na-concentration dependence on radiophotoluminescence properties of CaF2. Solid State Sci 2022, 128: 106892.

[255]

Kato T, Nakauchi D, Kawaguchi N, et al. Comparative study of optical and dosimetric properties of Mn-doped CaF2. Jpn J Appl Phys 2024, 63: 01SP05.

[256]
Kato T, Nakauchi D, Kawaguchi N, et al. Thermally stimulated luminescence properties of transparent ceramics for personal dosimetry. Jpn J Appl Phys 2023, 62 : 010604.
[257]

Kato T, Nakauchi D, Kawaguchi N, et al. Radiophotoluminescence phenomenon of CaF2 ceramics doped with Li. Photonics 2023, 10: 211.

[258]

Kato T, Kawano N, Okada G, et al. Scintillation properties of SrF2 translucent ceramics and crystal. Optik 2018, 168: 956–962.

[259]

Kato T, Nakauchi D, Kawaguchi N, et al. Scintillation properties of Eu-doped SrF2 transparent ceramics. Sensor Mater 2024, 36: 531.

[260]

Kawano N, Kato T, Conner RL, et al. Scintillation and dosimeter properties of Tb-doped strontium fluoride transparent ceramics. J Lumin 2024, 276: 120868.

[261]

Nakamura F, Kato T, Okada G, et al. Scintillation and storage luminescence properties of MgF2 transparent ceramics doped with Ce3+. Opt Mater 2017, 72: 470–475.

[262]

Nakamura F, Kato T, Okada G, et al. Scintillation, dosimeter and optical properties of MgF2 transparent ceramics doped with Gd3+. Mater Res Bull 2018, 98: 83–88.

[263]

Wang P, Yang MJ, Zhang S, et al. Suppression of carbon contamination in SPSed CaF2 transparent ceramics by Mo foil. J Eur Ceram Soc 2017, 37: 4103–4107.

[264]

Wang P, Huang ZF, Morita K, et al. Influence of spark plasma sintering conditions on microstructure, carbon contamination, and transmittance of CaF2 ceramics. J Eur Ceram Soc 2022, 42: 245–257.

[265]

Popov PA, Fedorov PP, Garibin EA, et al. Thermal conductivity of Ca1− x Ho x F2+ x optical ceramics. Inorg Mater 2012, 48: 857–860.

[266]

Jiang YG, Jiang BX, Zhu QH, et al. Effects of deformation rate on properties of Nd,Y-codoped CaF2 transparent ceramics. J Eur Ceram Soc 2018, 38: 2404–2409.

[267]

Liu ZD, Mei BC, Song JH, et al. Influence of Yb concentration on the optical properties of CaF2 transparent ceramics codoped with Er and Yb. J Am Ceram Soc 2015, 98: 3905–3910.

[268]

Li WW, Huang HJ, Mei BC, et al. Effect of Y3+ ion doping on the microstructure, transmittance and thermal properties of CaF2 transparent ceramics. J Alloys Compd 2018, 747: 359–365.

[269]

Liu ZD, Jia MY, Liu X, et al. Fabrication and microstructure characterizations of transparent polycrystalline fluorite ceramics. Mater Lett 2018, 227: 233–235.

[270]

Liu ZD, Gao Q, Chang FF, et al. Influence of preparing conditions on the hot-pressed sintering of transparent polycrystalline fluorite ceramics. Int J Appl Ceram Tec 2019, 16: 2441–2448.

[271]

Yi GQ, Mei BC, Li WW, et al. Microstructural and optical properties of Pr3+:(Ca0.97Gd0.03)F2.03 transparent ceramics sintered by vacuum hot-pressing method. J Lumin 2019, 214: 116575.

[272]

Zhi GL, Mei BC, Zhou WB, et al. Effects of sintering additives on preparation of CaF2 transparent ceramics. J Wuhan Univ Technol 2011, 26: 1179–1183.

[273]

Chen H, Ikesue A, Noto H, et al. Nd3+-activated CaF2 ceramic lasers. Opt Lett 2019, 44: 3378–3381.

[274]

Li WW, Mei BC, Song JH. Nd3+,Y3+-codoped SrF2 laser ceramics. Opt Mater 2015, 47: 108–111.

[275]

Zhang F, Liu J, Li WW, et al. Dual-wavelength continuous-wave and passively Q-switched Nd,Y:SrF2 ceramic laser. Opt Eng 2016, 55: 106114.

[276]

Ma FK, Su F, Zhou RF, et al. The defect aggregation of RE3+ (RE = Y, La–Lu) in MF2 (M = Ca, Sr, Ba) fluorites. Mater Res Bull 2020, 125: 110788.

[277]

Siebold M, Bock S, Schramm U, et al. Yb: CaF2—A new old laser crystal. Appl Phys B-Lasers O 2009, 97: 327–338.

[278]

Druon F, Ricaud S, Papadopoulos DN, et al. On Yb:CaF2 and Yb:SrF2: Review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance. Opt Mater Express 2011, 1: 489–502.

[279]

Liu XW, Mei BC, Tan GL. Transparent hexagonal Yb:Sr5(PO4)3F ceramics fabricated by hot pressing sintering with LiF doping. Ceram Int 2024, 50: 18380–18390.

[280]
Shirakawa A, Nakao H, Higashi Y, et al. Yb3+-doped CaF2–LaF3 ceramic laser. In: Advanced Solid-State Lasers Congress. Huber G, Molton P, Eds. Paris: Optica Publishing Group, 2013: JTh5A.7.
[281]

Aballea P, Suganuma A, Druon F, et al. Laser performance of diode-pumped Yb:CaF2 optical ceramics synthesized using an energy-efficient process. Optica 2015, 2: 288–291.

[282]

Sarthou J, Duquesne JY, Becerra L, et al. Thermal conductivity measurements of Yb:CaF2 transparent ceramics using the 3 ω method. J Appl Phys 2017, 121: 245108.

[283]
Kitajima S, Higashi Y, Nakao H, et al. Highly efficient Yb3+-doped CaF2–LaF3 ceramic laser. In: Proceedings of the 2016 Conference on Lasers and Electro–Optics (CLEO), 2016: 1–2.
[284]
Wang C, Hao QQ, Li WW, et al. 575-fs passively mode-locked Yb:CaF2 ceramic laser. Chinese Phys B 2020, 29 : 074205.
[285]

Yang H, Qin XP, Zhang J, et al. The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic. Opt Mater 2012, 34: 940–943.

[286]

Yi GQ, Guo XH, Wei ZS, et al. Concentration effect of Nd3+-doped CaF2 transparent ceramics: Structural evolution, optical transmittance and near-infrared fluorescence properties. J Lumin 2024, 275: 120789.

[287]

Fernández J, Oleaga A, Azkargorta J, et al. Nd3+ laser spectral dynamics in CaF2–YF3–NdF3 crystals. Opt Mater 1999, 13: 9–16.

[288]

Zhang GR, Wu YQ. High-entropy transparent ceramics: Review of potential candidates and recently studied cases. Int J Appl Ceram Tec 2022, 19: 644–672.

[289]

Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345: 1153–1158.

[290]

Rost CM, Sachet E, Borman T, et al. Entropy-stabilized oxides. Nat Commun 2015, 6: 8485.

[291]

Chen XQ, Wu YQ. High-entropy transparent fluoride laser ceramics. J Am Ceram Soc 2020, 103: 750–756.

[292]

Samuel P, Kumar GA, Takagimi Y, et al. Efficient energy transfer between Ce3+/Cr3+ and Nd3+ ions in transparent Nd/Ce/Cr:YAG ceramics. Opt Mater 2011, 34: 303–307.

[293]

Lupei V, Lupei A, Gheorghe C, et al. Sensitized Yb3+ emission in (Nd,Yb):Y3Al5O12 transparent ceramics. J Appl Phys 2010, 108: 123112.

[294]

Saiki T, Motokoshi S, Imasaki K, et al. Two-pass amplification of CW laser by Nd/Cr:YAG ceramic Active mirror under lamp light pumping. Opt Commun 2009, 282: 936–939.

Journal of Advanced Ceramics
Pages 1891-1918
Cite this article:
Li X, Hu C, Liu Q, et al. Fluoride transparent ceramics for solid-state lasers: A review. Journal of Advanced Ceramics, 2024, 13(12): 1891-1918. https://doi.org/10.26599/JAC.2024.9220986

975

Views

169

Downloads

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 22 August 2024
Revised: 05 October 2024
Accepted: 13 October 2024
Published: 28 December 2024
© The Author(s) 2024.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Return