Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
High-entropy MXenes, as a new emerging class of materials, possess diverse compositions, unexpected physicochemical characteristics, and great potentials for electromagnetic (EM) wave absorption. Herein, two single-to-few-layer high-entropy MXenes, (Mo0.25Cr0.25Ti0.25V0.25)3C2Tx and (Mo0.2Cr0.2Nb0.2Ti0.2V0.2)4C3Tx, were synthesized for the first time. During the exfoliation and delamination processes, the structural, morphological, and compositional evolutions were analyzed, verifying the successful formation of single-to-few-layer two-dimensional MXene nanosheets. Investigations indicate that with the filling content of only 35 wt%, MXene powder filled composites exhibit high-efficiency EM wave absorption performances. The f-(Mo0.25Cr0.25Ti0.25V0.25)3C2Tx possesses the minimum reflection loss (RLmin) of −45.0 dB with the matching thickness of 1.52 mm and the maximum effective absorption bandwidth (EAB) of 5.6 GHz at 1.65 mm thickness. Also, f-(Mo0.2Cr0.2Nb0.2Ti0.2V0.2)4C3Tx can attain an RLmin of −52.8 dB with the thickness of 1.58 mm and an optimum EAB value of 3.6 GHz at 1.50 mm. The satisfactory EM wave absorption efficiency and bandwidth, thin matching thickness, and low filling content prove the lightweight advantage and great application potential of high-entropy MXenes in EM wave absorption. In this work, the high-entropy strategy is applied to tune the EM wave absorption performances for MXenes. Furthermore, high-entropy engineering is expected to provide control and tunability of many other properties, such as electrochemical, catalytic, and mechanical behaviors.
2763
Views
843
Downloads
18
Crossref
21
Web of Science
19
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.