Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electromagnetic wave-absorbing (EMA) materials at high temperatures are limited by poor conduction loss (Lc). However, adding conductors simultaneously increases the conduction loss and interfacial polarization loss, leading to a conflict between impedance matching (Zin/Z0) and electromagnetic wave loss. This will prevent electromagnetic waves from entering the EMA materials, finally reducing overall absorbing performance. Here, the effective electrical conductivity (σ) is enhanced by synchronizing particle size and grain number of Ti3AlC2 to increase the conduction loss and avoid the conflict between the impedance matching and the electromagnetic wave loss. As a result, the best-absorbing performance with an effective absorption bandwidth (EAB) of 4.8 GHz (10.6–15.4 GHz) at a thickness of only 1.5 mm is realized, which is the best combination of wide absorption bandwidth and small thickness, and the minimum reflection loss (RLmin) reaches −45.6 dB at 4.1 GHz. In short, this work explores the regulating mechanism of the EMA materials of effective electrical conductivity by simulated calculations using the Vienna ab-initio Simulation Package (VASP) and COMSOL as well as a series of experiments, which provide new insight into a rational design of materials with anisotropic electrical conductivity.
7476
Views
1160
Downloads
22
Crossref
20
Web of Science
21
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.