Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
As a new category of ultra-high-temperature ceramics (UHTCs), multi-anionic high-entropy (HE) carbonitride UHTCs are expected to have better comprehensive performance than conventional UHTCs. However, how to realize the green and low-cost synthesis of high-quality multi-anionic HE carbonitride UHTC powders and prepare bulk ceramics with excellent mechanical properties still faces great challenges. In this work, a green, low-cost, and controllable preparation process of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)CxN1−x powders is achieved by sol–gel combined with the carbothermal reduction/nitridation method for the first time. The as-synthesized (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)CxN1−x powders possess high compositional uniformity and controllable particle size. In addition, the obtained bulk ceramics prepared at 1800 ℃ exhibit superior fracture toughness (KIC) of 5.39± 0.16 MPa·m1/2 and high nanohardness of 35.75±1.23 GPa, elastic modulus (E) of 566.70±8.68 GPa, and flexural strength of 487±41 MPa. This study provides a feasible strategy for preparing the high-performance HE carbonitride ceramics in a more environmentally friendly and economical manner.
2794
Views
704
Downloads
12
Crossref
11
Web of Science
11
Scopus
1
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.