Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
A series of high-k [(Na0.5Bi0.5)xBi1−x](WxV1−x)O4 (abbreviated as NBWV(x value)) solid solution ceramics with a scheelite-like structure are synthesized by a modified solid-state reaction method at the temperature range of 680–760 ℃. A monoclinic (0 ≤ x < 0.09) to tetragonal scheelite (0.09 ≤ x ≤ 1.0) structural phase transition is confirmed by X-ray diffraction (XRD), Raman, and infrared (IR) analyses. The effect of structural deformation and order–disorder caused by Na+/Bi3+/W6+ complex substitution on microwave dielectric properties is investigated in detail. The compositional series possess a wide range of variable relative permittivity (εr = 24.8–80) and temperature coefficient of resonant frequency (TCF value, −271.9–188.9 ppm/℃). The maximum permittivity of 80 and a high Q×f value of ~10,000 GHz are obtained near the phase boundary at x = 0.09. Furthermore, the temperature-stable dielectric ceramics sintered at 680 ℃ with excellent microwave dielectric properties of εr = 80.7, Q×f = 9400 GHz (at 4.1 GHz), and TCF value = −3.8 ppm/℃ are designed by mixing the components of x = 0.07 and 0.08. In summary, similar sinterability and structural compatibility of scheelite-like solid solution systems make it potential for low-temperature co-fired ceramic (LTCC) applications.
1702
Views
365
Downloads
21
Crossref
17
Web of Science
20
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.