Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Discovery of new phosphors with desired properties is of great significance for developing high optical quality solid-state lighting. The single-particle-diagnosis approach is an effective way to search novel phosphors by analyzing tiny single crystals screened from the fired powder mixtures. In this work, a broadband orange-emitting phosphor of Sr3Si8O4N10:Eu2+ for solid state lighting was discovered by this method. The new oxonitridosilicate crystallizes in the monoclinic space group of P21/n (No. 14) with cell parameters of a = 4.8185 Å, b = 24.2303 Å, c = 10.5611 Å, β = 90.616°, and Z = 4. The crystal structure of Sr3Si8O4N10 was determined from the single-crystal X-ray diffraction (XRD) data of a single crystal, which is made up of a three-dimensional framework consisting of vertex-sharing SiN4 and SiN3O tetrahedra. Sr2+ ions occupy five crystallographic sites and have coordination numbers between 6 and 8 with one ordered Sr and other four disordered Sr atoms. The multiple Sr sites lead to a broadband emission centered at 565–600 nm and a bandwidth of 128–138 nm. The internal and external quantum efficiencies (IQE/EQE) of the title phosphor are 48.6% and 29.1% under 450 nm excitation, respectively. To improve the accuracy and speed of distinguishing phosphor particles in fired powder mixtures, a microscopic imaging spectroscopy is developed and demonstrated to modify the single-particle-diagnosis method.
1836
Views
275
Downloads
14
Crossref
13
Web of Science
14
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.