Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Relaxor ferroelectric ceramics have very high dielectric constant (εr) but relatively low electrical breakdown strength (Eb), while glass–ceramics exhibit higher Eb due to the more uniformly dispersed amorphous phases and submicrocrystals/nanocrystals inside. How to effectively combine the advantages of both relaxor ferroelectric ceramics and glass–ceramics is of great significance for the development of new dielectric materials with high energy storage performance. In this work, we firstly prepared BaO–SrO–Bi2O3–Na2O–TiO2–Al2O3–SiO2 (abbreviated as GS) glass powders, and then fabricated (Ba0.3Sr0.7)0.5(Bi0.5Na0.5)0.5TiO3 + x wt% GS ceramic composites (abbreviated as BS0.5BNT–xGS, x = 0, 2, 6, 10, 14, 16, and 18). Submicrocrystals/nanocrystals with a similar composition to BS0.5BNT were crystalized from the glass, ensuring the formation of uniform core–shell structure in BS0.5BNT–xGS relaxor ferroelectric ceramic/glass–ceramic composites. When the addition amount of GS was 14 wt%, the composite possessed both high εr (> 3200 at 1 kHz) and high Eb (≈ 170 kV/cm) at room temperature, and their recoverable energy storage density and efficiency were Wrec = 2.1 J/cm3 and η = 65.2%, respectively. The BS0.5BNT–14GS composite also had several attractive properties such as good temperature, frequency, cycle stability, and fast charge–discharge speed. This work provides insights into the relaxor ceramic/glass–ceramic composites for pulsed power capacitors and sheds light on the utilization of the hybrid systems.
2505
Views
563
Downloads
14
Crossref
12
Web of Science
14
Scopus
1
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.