References(56)
[1]
Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321: 1457–1461.
[2]
Zhao WY, Liu ZY, Sun ZG, et al. Superparamagnetic enhancement of thermoelectric performance. Nature 2017, 549: 247–251.
[3]
Jing HM, Tong X, Zhu JL, et al. Microstructural analysis and thermoelectric properties of skutterudite CoSb3 materials produced by melt spinning and spark plasma sintering. Ceram Int 2021, 47: 24916–24923.
[4]
Yu J, Ma SF, Xie XX, et al. Unique surface structure resulting in the excellent long-term thermal stability of Fe4Sb12-based filled skutterudites. J Eur Ceram Soc 2022, 42: 1007–1013.
[5]
Zheng YP, Zou MC, Zhang WY, et al. Electrical and thermal transport behaviours of high-entropy perovskite thermoelectric oxides. J Adv Ceram 2021, 10: 377–384.
[6]
Liu ZY, Wang YG, Zhao CY, et al. Nano-mesoscopic scale microstructure regulation for p-type skutterudite thermoelectric materials. Acta Metall Sin 2022, 58: 979–991. (in Chinese)
[7]
Soufiane EO, Kogut I, Benyahia M, et al. High power density thermoelectric generators with skutterudites. Adv Energy Mater 2021, 11: 2100580.
[8]
Liu ZY, Yang T, Wang YG, et al. Energy band and charge-carrier engineering in skutterudite thermoelectric materials. Chin Phys B 2022, 31: 107303.
[9]
Zhang L, Rogl G, Grytsiv A, et al. Mechanical properties of filled antimonide skutterudites. Mater Sci Eng B 2010, 170: 26–31.
[10]
Rogl G, Rogl P. Mechanical properties of skutterudites. Sci Adv Mat 2011, 3: 517–538.
[11]
Zhu JL, Liu ZY, Tong X, et al. Synergistic optimization of electrical-thermal-mechanical properties of the In-filled CoSb3 material by introducing Bi0.5Sb1.5Te3 nanoparticles. ACS Appl Mater Interfaces 2021, 13: 23894–23904.
[12]
Zhao WY, Liu ZY, Wei P, et al. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nat Nanotechnol 2017, 12: 55–60.
[13]
Zhang QH, Huang XY, Bai SQ, et al. Thermoelectric devices for power generation: Recent progress and future challenges. Adv Eng Mater 2016, 18: 194–213.
[14]
Tong X, Liu ZY, Zhu JL, et al. Research progress of p-type Fe-based skutterudite thermoelectric materials. Front Mater Sci 2021, 15: 317–333.
[15]
Liu ZY, Zhu JL, Tong X, et al. A review of CoSb3-based skutterudite thermoelectric materials. J Adv Ceram 2020, 9: 647–673.
[16]
Rogl G, Grytsiv A, Rogl P, et al. N-type skutterudites (R, Ba, Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≈ 2.0. Acta Mater 2014, 63: 30–43.
[17]
Rogl G, Grytsiv A, Heinrich P, et al. New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12–xXx (X = Ge, Sn) reaching ZT > 1.3. Acta Mater 2015, 91: 227–238.
[18]
Prado-Gonjal J, Vaqueiro P, Nuttall C, et al. Enhancing the thermoelectric properties of single and double filled p-type skutterudites synthesized by an up-scaled ball-milling process. J Alloys Compd 2017, 695: 3598–3604.
[19]
Jie Q, Wang HZ, Liu WS, et al. Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing. Phys Chem Chem Phys 2013, 15: 6809–6816.
[20]
Guo LJ, Wang GW, Peng KL, et al. Melt spinning synthesis of p-type skutterudites: Drastically speed up the process of high performance thermoelectrics. Scripta Mater 2016, 116: 26–30.
[21]
Tan GJ, Liu W, Wang SY, et al. Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance. J Mater Chem A 2013, 1: 12657–12668.
[22]
Li XG, Liu WD, Li SM, et al. Impurity removal leading to high-performance CoSb3-based skutterudites with synergistic carrier concentration optimization and thermal conductivity reduction. ACS Appl Mater Interfaces 2021, 13: 54185–54193.
[23]
Rogl G, Grytsiv A, Rogl P, et al. Dependence of thermoelectric behaviour on severe plastic deformation parameters: A case study on p-type skutterudite DD0.60Fe3CoSb12. Acta Mater 2013, 61: 6778–6789.
[24]
Bérardan D, Alleno E, Godart C, et al. Improved thermoelectric properties in double-filled Cey/2Yby/2Fe4−x(Co/Ni)xSb12 skutterudites. J Appl Phys 2005, 98: 033710.
[25]
Rogl G, Grytsiv A, Bauer E, et al. Thermoelectric properties of novel skutterudites with didymium: DDy(Fe1−xCox)4Sb12 and DDy(Fe1−xNix)4Sb12. Intermetallics 2010, 18: 57–64.
[26]
Tan GJ, Wang SY, Yan YG, et al. Effects of cobalt substitution for Fe on the thermoelectric properties of p-type CeFe4−xCoxSb12 skutterudites. J Electron Mater 2012, 41: 1147–1152.
[27]
Carlini R, Khan AU, Ricciardi R, et al. Synthesis, characterization and thermoelectric properties of Sm filled Fe4−xNixSb12 skutterudites. J Alloys Compd 2016, 655: 321–326.
[28]
Wang BY, Jin HB, Yi W, et al. Ni substitution improves the high-temperature thermoelectric performance of electronegative element Se-filled skutterudite Se0.05NixCo4−xSb12. J Alloys Compd 2022, 909: 164733.
[29]
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 1996, 54: 11169–11186.
[30]
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996, 77: 3865–3868.
[31]
Blöchl PE. Projector augmented-wave method. Phys Rev B Condens Matter 1994, 50: 17953–17979.
[32]
Monkhorst HJ, Pack JD. Special points for brillouin-zone integrations. Phys Rev B 1976, 13: 5188–5192.
[33]
Liu ZY, Zhu WT, Nie XL, et al. Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites. J Mater Sci Mater Electron2019, 30: 12493–12499.
[34]
Nolas GS, Kendziora CA, Takizawa H. Polarized Raman-scattering study of Ge and Sn-filled CoSb3. J Appl Phys 2003, 94: 7440–7444.
[35]
Lu PX, Shen ZG, Hu X. Effects of the voids filling on the lattice vibrations for the CoSb3-based thermoelectric materials—Raman scattering spectra and theoretical study. Phys B Condens Matter 2010, 405: 2589–2592.
[36]
Feldman JL, Singh DJ. Lattice dynamics of skutterudites: First-principles and model calculations for CoSb3. Phys Rev B 1996, 53: 6273–6282.
[37]
Peng JY, Yang JY, Zhang TJ, et al. Effect of partial void filling on the Raman spectra and thermal transport property of skutterudite compounds LayCo3.5Fe0.5Sb12. Mater Chem Phys 2006, 100: 15–18.
[38]
Deng L, Li DN, Qin JM, et al. Effect of Pb filling and synthesis pressure regulation on the thermoelectric properties of CoSb3. Inorg Chem 2019, 58: 4033–4037.
[39]
Settipalli M, Proshchenko VS, Neogi S. The effect of electron–phonon and electron–impurity scattering on the electronic transport properties of silicon/germanium superlattices. J Mater Chem C 2022, 10: 7525–7542.
[40]
Fröhlich H. Electrons in lattice fields. Adv Phys 1954, 3: 325–361.
[41]
Kim H, Kim MH, Kaviany M. Lattice thermal conductivity of UO2 using ab-initio and classical molecular dynamics. J Appl Phys 2014, 115: 123510.
[42]
Shi XY, Pei YZ, Snyder GJ, et al. Optimized thermoelectric properties of Mo3Sb7−xTex with significant phonon scattering by electrons. Energy Environ Sci 2011, 4: 4086–4095.
[43]
Cutler M, Leavy JF, Fitzpatrick RL. Electronic transport in semimetallic cerium sulfide. Phys Rev 1964, 133: A1143–A1152.
[44]
Anno H, Matsubara K, Notohara Y, et al. Effects of doping on the transport properties of CoSb3. J Appl Phys 1999, 86: 3780–3786.
[45]
Zhao LD, Lo SH, He JQ, et al. High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS by second phase nanostructures. J Am Chem Soc 2011, 133: 20476–20487.
[46]
Ashcroft NW, Mermin ND. Solid State Physics Thomson Learning. New York: Harcourt College Publishers, 1976.
[47]
Callaway J, von Baeyer HC. Effect of point imperfections on lattice thermal conductivity. Phys Rev 1960, 120: 1149–1154.
[48]
Bhandari CM, Rowe DM. Thermal Conduction in Semiconductors. John Wiley & Sons, 1988.
[49]
Fu LW, Yang JY, Jiang QH, et al. Thermoelectric performance enhancement of CeFe4Sb12 p-type skutterudite by disorder on the Sb4 rings induced by Te doping and nanopores. J Electron Mater2016, 45: 1240–1244.
[50]
Tan GJ, Wang SY, Tang XF. Thermoelectric performance optimization in p-type CeyFe3CoSb12 skutterudites. J Electron Mater 2014, 43: 1712–1717.
[51]
Tan GJ, Zheng Y, Yan YG, et al. Preparation and thermoelectric properties of p-type filled skutterudites CeyFe4−xNixSb12. J Alloys Compd 2014, 584: 216–221.
[52]
Park KH, Lee S, Seo WS, et al. Synthesis and thermoelectric properties of CezFe4−xCoxSb12 skutterudites. J Korean Phys Soc 2014, 64: 84–88.
[53]
Zhang L, Grytsiv A, Kerber M, et al. Thermoelectric performance of mischmetal skutterudites MmyFe4−xCoxSb12 at elevated temperatures. J Alloys Compd 2010, 490: 19–25.
[54]
Liu RH, Qiu PF, Chen XH, et al. Composition optimization of p-type skutterudites CeyFexCo4−xSb12 and YbyFexCo4−xSb12. J Mater Res 2011, 26: 1813–1819.
[55]
Liu RH, Yang J, Chen XH, et al. p-type skutterudites RxMyFe3CoSb12 (R, M= Ba, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction. Intermetallics 2011, 19: 1747–1751.
[56]
Sharma V, Singh SP, Mudahar GS, et al. Synthesis and characterization of cadmium containing sodium borate glasses. New J Glass Ceram 2012, 2: 128–132.